
GraphBLAS: A linear algebraic approach
for high-performance graph algorithms

Gábor Szárnyas
szarnyas@mit.bme.hu

WHAT MAKES GRAPH PROCESSING DIFFICULT?

the “curse of connectedness”

contemporary computer architectures are good at
processing linear and hierarchical data structures,
such as Lists, Stacks, or Trees

a massive amount of random data access is required,
CPU has frequent cache misses, and implementing
parallelism is difficult

B. Shao, Y. Li, H. Wang, H. Xia (Microsoft Research),
Trinity Graph Engine and its Applications,
IEEE Data Engineering Bulleting 2017

connectedness

computer
architectures

caching and
parallelization

http://sites.computer.org/debull/A17sept/p18.pdf
http://sites.computer.org/debull/A17sept/p18.pdf

Graph processing in linear algebra

ADJACENCY MATRIX

𝐀       

 0 1 0 1 0 0 0

 0 0 0 0 1 0 1

 0 0 0 0 0 1 0

 1 0 1 0 0 0 0

 0 0 0 0 0 1 0

 0 0 1 0 0 0 0

 0 0 1 1 1 0 0

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸







 



ADJACENCY MATRIX

𝐀       

 0 1 0 1 0 0 0

 0 0 0 0 1 0 1

 0 0 0 0 0 1 0

 1 0 1 0 0 0 0

 0 0 0 0 0 1 0

 0 0 1 0 0 0 0

 0 0 1 1 1 0 0

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸





 



 

source

target

Most cells are zero:
sparse matrix

ADJACENCY MATRIX

𝐀       

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸





 



 

source

target

Most cells are zero:
sparse matrix

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

      

𝐯 1

𝐀
 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

one-hop: 𝐯𝐀

1 1 1
      

 





Use vector/matrix operations to express graph algorithms:

𝐯𝐀𝑘 means 𝑘 hops in the graph





GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

      

𝐯 1

𝐀
 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

one-hop: 𝐯𝐀

1 1 1
      

𝐀
 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 1 2
      

two-hop: 𝐯𝐀𝟐

 

 



Use vector/matrix operations to express graph algorithms:

𝐯𝐀𝑘 means 𝑘 hops in the graph

BOOKS ON LINEAR ALGEBRA FOR GRAPH PROCESSING

 1974: Aho-Hopcroft-Ullman book

o The Design and Analysis of Computer Algorithms

 1990: Cormen-Leiserson-Rivest book

o Introduction to Algorithms

 2011: GALLA book (ed. Kepner and Gilbert)

o Graph Algorithms in the Language of Linear Algebra

A lot of literature but few practical implementations
and particularly few easy-to-use libraries.

https://books.google.hu/books/about/The_design_and_analysis_of_computer_algo.html?id=SJJQAAAAMAAJ&redir_esc=y
https://books.google.hu/books/about/The_design_and_analysis_of_computer_algo.html?id=SJJQAAAAMAAJ&redir_esc=y
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964

THE GRAPHBLAS STANDARD

BLAS GraphBLAS

Hardware architecture Hardware architecture

Numerical applications Graph analytical apps

LAGraphLINPACK/LAPACK

Separation of concernsSeparation of concerns

Goal: separate the concerns of the hardware/library/application designers.

 1979: BLAS Basic Linear Algebra Subprograms (dense)

 2001: Sparse BLAS an extension to BLAS (insufficient for graphs, little uptake)

 2013: GraphBLAS standard building blocks for graph algorithms in LA

Semiring-based graph computations

MATRIX MULTIPLICATION

Definition:
𝐂 = 𝐀𝐁

𝐂 𝑖, 𝑗 = Σ
𝑘
𝐀 𝑖, 𝑘 ⋅ 𝐁 𝑘, 𝑗

Example:

𝐂 2,3 =𝐀 2,1 ⋅ 𝐁 1,3 +

𝐀 2,2 ⋅ 𝐁 2,3

= 2 ⋅ 5 + 3 ⋅ 4 = 22

22

𝐀

2 3

𝐁

5

4

𝐂 = 𝐀 ⋅ 𝐁

10 + 12 = 22

3 · 4 = 12

2 · 5 = 10

MATRIX MULTIPLICATION ON SEMIRINGS

 Using the conventional semiring

𝐂 = 𝐀𝐁
𝐂 𝑖, 𝑗 = Σ

𝑘
𝐀 𝑖, 𝑘 ⋅ 𝐁 𝑘, 𝑗

 Use arbitrary semirings that override the ⨁ addition and
⨂ multiplication operators. Generalized formula (simplified)

𝐂 = 𝐀⨁.⨂ 𝐁
𝐂 𝑖, 𝑗 =⊕

𝑘
𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

GRAPHBLAS SEMIRINGS

The 𝐷,⊕,⊗, 0 algebraic structure is a GraphBLAS semiring if

 𝐷,⊕, 0 is a commutative monoid over domain 𝐷 with an
addition operator ⊕ and identity 0, where ∀𝑎, 𝑏, 𝑐 ∈ 𝐷:

o Commutative 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎

o Associative 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕ 𝑏⊕ 𝑐

o Identity 𝑎 ⊕ 0 = 𝑎

 The multiplication operator is a closed binary operator
⊗:𝐷 × 𝐷 → 𝐷.

This is less strict than the standard mathematical definition which
requires that ⊗ is a monoid and distributes over ⊕.

COMMON SEMIRINGS

semiring domain ⨁ ⨂ 0

integer arithmetic 𝑎 ∈ ℕ + ⋅ 0

real arithmetic 𝑎 ∈ ℝ + ⋅ 0

lor-land 𝑎 ∈ F, T ⋁ ⋀ F

Galois field 𝑎 ∈ 0,1 xor ⋀ 0

power set 𝑎 ⊂ ℤ ∪ ∩ ∅

Notation: 𝐀⊕.⊗ 𝐁 is a matrix multiplication using addition ⊕ and
multiplication ⊗, e.g. 𝐀 ∨.∧ 𝐁. The default is 𝐀 + . ⋅ 𝐁

MATRIX MULTIPLICATION SEMANTICS

Semantics: number of paths







 



semiring domain ⨁ ⨂ 0

integer arithmetic 𝑎 ∈ ℕ + ⋅ 0

      

𝐯 0 0 0 1 0 1 0

𝐀       
 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 2

1·1=1

1+1=2

1·1=1

𝐯⊕.⊗ 𝐀

MATRIX MULTIPLICATION SEMANTICS

semiring domain ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F







 



Semantics: reachability

      

𝐯 F F F T F T F

𝐀       
 T T
 T T
 T
 T T
 T
 T
 T T T

T T

T∧T=T

T∧T=T

T∨T=T 𝐯 ∨.∧ 𝐀Identity element: F

MATRIX MULTIPLICATION SEMANTICS

semiring domain ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞

Semantics: shortest path

.2

.4

.5

.6







 

 .5

      

𝐯 ∞ ∞ ∞ .5 ∞ .6 ∞

𝐀       
 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.7 .9

min(0.9,1.1)=0.9 𝐯 min . + 𝐀

0.5+0.4=0.9

0.6+0.5=1.1

Graph algorithms in GraphBLAS

Single-source shortest path

SSSP – SINGLE-SOURCE SHORTEST PATHS

 Problem:

o From a given start node 𝑠, find the shortest paths to every other
(reachable) node in the graph

 Bellman-Ford algorithm:

o Relaxes all edges in each step

oGuaranteed to find the shortest paths using at most 𝑛 − 1 steps

 Observation:

o The relaxation step can be captured using a VM multiplication

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 ∞ ∞ ∞ ∞ ∞ ∞

𝐀       
 0 .3 ∞ .8 ∞ ∞ ∞
 ∞ 0 ∞ ∞ .1 ∞ .7
 ∞ ∞ 0 ∞ ∞ .5 ∞
 .2 ∞ .4 0 ∞ ∞ ∞
 ∞ ∞ ∞ ∞ 0 .1 ∞
 ∞ ∞ .5 ∞ ∞ 0 ∞
 ∞ ∞ .1 .5 .9 ∞ 0

.3

.8

.8

.7 .1

.5

.1

.1

.5

𝐝 min.+𝐀

𝐀𝑖𝑗 = ൞

0 if 𝑖 = 𝑗

𝑤 𝑒𝑖𝑗 if 𝑒𝑖𝑗 ∈ 𝐸

∞ if 𝑒𝑖𝑗 ∉ 𝐸

𝐝 = ∞∞…∞

𝐝 𝑠 = 0

We use the min-plus semiring with identity ∞.

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 ∞ ∞ ∞ ∞ ∞ ∞

.3

.8

.8

.7 .1

.5

.1

.1

.5

𝐝 min.+𝐀

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞ 𝐀       
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 ∞ ∞ ∞ ∞ ∞ ∞

𝐀       
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 .8

.3

.8

.8

.7 .1

.5

.1

.1

.5

𝐝 min.+𝐀

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 .3 ∞ .8 ∞ ∞ ∞

𝐀       
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1.2 .8 .4 1

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 .3 1.2 .8 .4 ∞ 1

𝐀       
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1.1 .8 .4 .5 1

.3

.8

.8

.7 .1

.5

.1

.1

.5

𝐝 min.+𝐀

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 



      

𝐝 0 .3 1.1 .8 .4 .5 1

𝐀       
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1 .8 .4 .5 1

.5

.5

.3

.8

.8

.7 .1

.5

.1

.1

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 



      

𝐝 0 .3 1 .8 .4 .5 1

𝐀       
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

.5

.5

.3

.8

.8

.7 .1

.5

.1

.1

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ ∞ min + ∞

0 .3 1 .8 .4 .5 1

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD ALGO.

Input: adjacency matrix 𝐀, source node 𝑠, #nodes 𝑛

𝐀𝑖𝑗 = ൞

0 if 𝑖 = 𝑗

𝑤 𝑒𝑖𝑗 if 𝑒𝑖𝑗 ∈ 𝐸

∞ if 𝑒𝑖𝑗 ∉ 𝐸

Output: distance vector 𝐝 ∈ ℝ ∪ ∞ 𝑛

1. 𝐝 = ∞∞…∞

2. 𝐝 𝑠 = 0

3. for 𝑘 = 1 to 𝑛 − 1 *terminate earlier if we reach a fixed point

4. 𝐝 = 𝐝min.+𝐀

Optimization: switch between 𝐝 min.+𝐀 and 𝐀⊤ min.+𝐝 (push/pull).

Graph algorithms in GraphBLAS

Node-wise triangle count

NODE-WISE TRIANGLE COUNT

Triangle – Def 1: a set of three mutually adjacent nodes.

Def 2: a three-length closed path.

Usages:

 Global clustering coefficient

 Local clustering coefficient

 Finding communities

𝑣







 



2

8

4

6

6

2

2

GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018

TC: NAÏVE APPROACH







 



2

8

4

6

6

2

2

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

2 6 4 7 4 3 4

6 6 6 11 8 5 9

4 6 4 8 4 7 9

7 11 8 8 5 10 12

4 8 4 5 2 8 9

3 5 7 10 8 2 4

4 9 9 12 9 4 6

𝐭𝐫𝐢 = diag−1 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀

2

6

4

8

2

2

6

𝐭𝐫𝐢

TC: OPTIMIZATION

Observation: Matrix 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀 is no longer sparse.

Optimization: Use element-wise multiplication ⊗ to close
wedges into triangles:

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

Then, perform a row-wise summation to get the number of
triangles in each row:

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

TC: ELEMENT-WISE MULTIPLICATION

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

𝐀⊕.⊗ 𝐀 is still very dense.

2

6

4

8

2

2

6







 



2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

𝐓𝐑𝐈

⊗ 𝐀

TC: ELEMENT-WISE MULTIPLICATION

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6







 



2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

Masking limits where the
operation is computed.
Here, we use 𝐀 as a mask
for 𝐀⊕.⊗ 𝐀.

TC: ALGORITHM

Input: adjacency matrix 𝐀

Output: vector 𝐭𝐫𝐢

Workspace: matrix 𝐓𝐑𝐈

1. 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀 compute the triangle count matrix

2. 𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 compute the triangle count vector

Optimization: use 𝐋, the lower triangular part of 𝐀 to avoid duplicates.
𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

Worst-case optimal joins: There are deep theoretical connections between masked matrix multiplication and
relational joins. It has been proven in 2013 that for the triangle query, binary joins always provide suboptimal
runtime, which gave rise to new research on the family of worst-case optimal multi-way joins algorithms.

Graph algorithms in GraphBLAS

Other algorithms

GRAPH ALGORITHMS IN GRAPHBLAS

problem category algorithm
canonical

complexity Θ
LA-based

complexity Θ

breadth-first search 𝑚 𝑚

single-source shortest paths
Dijkstra 𝑚+ 𝑛 log𝑛 𝑛2

Bellman-Ford 𝑚𝑛 𝑚𝑛

all-pairs shortest paths Floyd-Warshall 𝑛3 𝑛3

minimum spanning tree
Prim 𝑚+ 𝑛 log𝑛 𝑛2

Borůvka 𝑚 log𝑛 𝑚 log𝑛

maximum flow Edmonds-Karp 𝑚2𝑛 𝑚2𝑛

maximal independent set
greedy 𝑚+ 𝑛 log𝑛 𝑚𝑛 + 𝑛2

Luby 𝑚+ 𝑛 log𝑛 𝑚 log𝑛

Based on the table in J. Kepner:
Analytic Theory of Power Law Graphs,
SIAM Workshop for HPC on Large Graphs, 2008

Notation: 𝑛 = 𝑉 ,𝑚 = |𝐸|. The complexity cells contain asymptotic bounds.
Takeaway: The majority of common graph algorithms can be expressed efficiently in LA.

See also L. Dhulipala, G.E. Blelloch, J. Shun:
Theoretically Efficient Parallel Graph Algorithms
Can Be Fast and Scalable, SPAA 2018

http://www.graphanalysis.org/SIAM-PP08/Kepner.pdf
http://www.graphanalysis.org/SIAM-PP08/Kepner.pdf
https://people.csail.mit.edu/jshun/spaa2018.pdf
https://people.csail.mit.edu/jshun/spaa2018.pdf

API and implementations

GRAPHBLAS C API

 “A crucial piece of the GraphBLAS effort is to translate the
mathematical specification to an API that

o is faithful to the mathematics as much as possible, and

o enables efficient implementations on modern hardware.”

mxm(Matrix *C, Matrix M, BinaryOp accum, Semiring op, Matrix A, Matrix B, Descriptor desc)

𝐂 ¬𝐌 ⊙= ⊕.⊗ 𝐀⊤, 𝐁⊤

A. Buluç et al.: Design of the GraphBLAS C API, GABB@IPDPS 2017

SUITESPARSE:GRAPHBLAS

 Authored by Prof. Tim Davis at Texas A&M University,
based on his SuiteSparse library (used in MATLAB).

 Additional extension operations for efficiency.

 Sophisticated load balancer for multi-threaded execution.

 CPU-based, single machine implementation.

 Powers the RedisGraph graph database.

T.A. Davis: Algorithm 1000: SuiteSparse:GraphBLAS:
graph algorithms in the language of sparse linear
algebra, ACM TOMS, 2019

T.A. Davis: SuiteSparse:GraphBLAS: graph
algorithms via sparse matrix operations
on semirings, Sparse Days 2017

R. Lipman, T.A. Davis: Graph Algebra – Graph operations
in the language of linear algebra, RedisConf 2018

R. Lipman: RedisGraph
internals, RedisConf 2019

http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
https://cerfacs.fr/wp-content/uploads/2017/09/S02E04-Davis.pdf
https://cerfacs.fr/wp-content/uploads/2017/09/S02E04-Davis.pdf
https://www.slideshare.net/RedisLabs/redisgraph-internals-roi-lipman
https://www.slideshare.net/RedisLabs/redisgraph-internals-roi-lipman
https://www.slideshare.net/RedisLabs/redisconf18-lower-latency-graph-queries-in-cypher-with-redis-graph
https://www.slideshare.net/RedisLabs/redisconf18-lower-latency-graph-queries-in-cypher-with-redis-graph

PYTHON WRAPPERS

Two libraries, both offer:

 Concise GraphBLAS operations

 Wrapping SuiteSparse:GrB

 Jupyter support

Difference: pygraphblas is more
Pythonic, grblas strives to stay
close to the C API.

michelp/pygraphblas

jim22k/grblas

https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/
https://github.com/michelp/pygraphblas
https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/
https://github.com/jim22k/grblas

Benchmark results

SUITESPARSE:GRAPHBLAS / LDBC GRAPHALYTICS

Twitter
50M nodes,

2B edges

Results from late 2019,
new version is even faster

graph500-26
33M nodes,
1.1B edges

d-8.8-zf
168M nodes,
413M edges

d-8.6-fb
6M nodes,

422M edges

Ubuntu Server, 512 GB RAM,
64 CPU cores, 128 threads

THE GAP BENCHMARK SUITE

S. Beamer, K. Asanovic, D. Patterson:
The GAP Benchmark Suite, arXiv, 2017

 Part of the Berkeley Graph Algorithm Platform project

 Algorithms:

o BFS, SSSP, PageRank, connected components

o betweenness centrality, triangle count

 Very efficient baseline implementation in C++

 Comparing executions of implementations that were
carefully optimized and fine-tuned by research groups

 Ongoing benchmark effort, paper to be submitted in Q2

gap.cs.berkeley.edu/benchmark.html

https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/1508.03619
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html

Further reading and summary

RESOURCES

List of GraphBLAS-related books, papers, presentations, posters, and software
szarnyasg/graphblas-pointers

Library of GraphBLAS algorithms
GraphBLAS/LAGraph

Extended version of this talk: 200+ slides

 Theoretical foundations

 BFS variants, PageRank

 clustering coefficient, 𝑘-truss and triangle count variants

 Community detection using label propagation

 Luby’s maximal independent set algorithm

 computing connected components on an overlay graph

 connections to relational algebra

https://github.com/szarnyasg/graphblas-pointers
https://github.com/szarnyasg/graphblas-pointers
https://github.com/szarnyasg/graphblas-pointers
https://github.com/GraphBLAS/LAGraph
https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/

SUMMARY

 Linear algebra is a powerful abstraction

oGood expressive power

o Concise formulation of most graph algorithms

o Very good performance

o Still lots of ongoing research

 Trade-offs:

o Learning curve (theory and GraphBLAS API)

o Some algorithms are difficult to formulate in linear algebra

oOnly a few GraphBLAS implementations (yet)

 Overall: a very promising programming model for graph
algorithms suited to the age of heterogeneous hardware

ACKNOWLEDGEMENTS

 Tim Davis and Tim Mattson for helpful discussions,
members of GraphBLAS mailing list for their detailed
feedback.

 The LDBC Graphalytics task force for creating the
benchmark and assisting in the measurements.

 Master’s students at BME for developing GraphBLAS-based
algorithms: Bálint Hegyi, Márton Elekes, Petra Várhegyi,
Lehel Boér

