Porting Go to NetBSD/arm64
Maya Rashish <coypu@sdf.org>

Porting Go to NetBSD/arm64

e Porting: making something run on another
operating system or architecture

e Go: aprogramming language

e NetBSD: an operating system (1993-current)

e arm64: CPU architecture (iPhone, most Android...)

Porting Go, a top-level overview

1. Adding your target to the list of supported targets
2. Several generated files
3. Operating System-specific calls

Adding your target to a list of targets

Strategy: pretend it works, look up error strings
~/g/src> env GOOS=netbsd GOARCH=arm64 bash ./make.bash

Building packages and commands for target, netbsd/armb64.
cmd/go: unsupported GOOS/GOARCH pair netbsd/armé6i

Generated files
zsysnum, zerror...

NetBSD pretty consistent: copy the amd64 files

Operating System specific logic
open a file, create a thread...

~500 lines of assembly

the stack

everything below the stack pointer is free to use.

Repercussions of using libc

e every thread needs its own "big enough" stack.
constant overhead
e Need to save state Go puts in places that aren't kept

by C

List of things to implement in "Go libc"

lwp_create, lwp_tramp, osyield, lwp_park, lwp_unpark, lwp_self, exit, exitThread, open,
closefd, read, write, usleep, raise, raiseproc, setitimer, walltime, nanotime, getcontext,
sigprocmask, sigreturn_tramp, sigaction, sigfwd, sigtramp, mmap, munmap, madyvise,
sigaltstack, settls, sysctl, kqueue, kevent, closeonexec.

Know your C ABI:

X0 X0 X1 X2.. XT7..stack

int open(const char *path, intflags, ...);

SIMPLE IMPLEMENTATION: EXIT
X86_ 64:

// Exit the entire program (like C exit)
TEXT runtime-exit (SB),NOSPLIT, $—8

MOV L code+0 (FpP), DI // arg 1 - exit status
MOVL S1, AX // sys_exit
SYSCALL
MOVL SOxfl, Oxfl // crash
RET
armo4:
#fdefine SYS exit 1

// Exit the entire program (like C exit)
TEXT runtime-exit (SB),NOSPLIT, $—8

MOVD code+0 (FP), RO // arg 1 - exit status
SVC SSYS exit
MOVD SO0, RO // If we're still running,

MOVD RO, (RO) // crash

Debugging: ktrace

> ktruss -1 ./hello

34 1 hello __sigprocmaskl4 (0x3, 0, 0x1840c0) = 0
34 1 hello __clock_gettimeb0 (0x3, Oxffffffffe8b8) = O

C ABI? syscalls aren't required to follow that.

Signal handling

~T
Expected:

[3032.02447760] load: 0.64 cmd: cat 1530 [ttyraw] 0.00u 0.01ls 0% 12
Got :
Segmentation fault

g is nil?

g:
e Best, easiest to search name
e goroutine specific accounting

What C ABI says about thread-local storage
Memory area per-thread, each thread gets their own

e "mrs tpidr_elO, r0"

#ifdef TLS 1linux

#define TPIDR TPIDR ELO

#define MRS TPIDR_ RO WORD $0xd53bd040 // MRS TPIDR ELO, RO
#fendif

#ifdef GOOS darwin

#define TPIDR TPIDRRO ELO

#define TLSG IS VARIABLE

#define MRS _TPIDR_RO WORD $0xd53bd060 // MRS TPIDRRO ELO, RO
#fendif

e [Wwp_getprivate?

Go dual nature
cgo, using regular thread-local storage, easier to call C

Normal go, assembly, standalone, very incompatible
with C.

g 1S X28.

SIGNAL HANDLING

Want to pass information to signal handler

NetBSD kernel signal delivery...

tf—->tf _reg[0] = ksi—-—>ksi_signo;

tf—>tf_regl[l] = sip;

tf—>tf_regl[2] = ucp;

tf->tf reg[28] = ucp; /* put in a callee saved register */

Tramples some registers

all the state to recover is in ucontext (ucp)

Can build hello world

Questions?

