
Porting Go to NetBSD/arm64

Maya Rashish <coypu@sdf.org>

Porting Go to NetBSD/arm64

Porting: making something run on another
operating system or architecture
Go: a programming language
NetBSD: an operating system (1993-current)
arm64: CPU architecture (iPhone, most Android...)

Porting Go, a top-level overview

1. Adding your target to the list of supported targets
2. Several generated files
3. Operating System-specific calls

Adding your target to a list of targets

Strategy: pretend it works, look up error strings
~/g/src> env GOOS=netbsd GOARCH=arm64 bash ./make.bash
...
Building packages and commands for target, netbsd/arm64.
cmd/go: unsupported GOOS/GOARCH pair netbsd/arm64

Generated files

zsysnum, zerror...

NetBSD pretty consistent: copy the amd64 files

Operating System specific logic

open a file, create a thread...

~500 lines of assembly

WHY???

the stack

stack pointer

everything below the stack pointer is free to use.

Repercussions of using libc

every thread needs its own "big enough" stack.
constant overhead
Need to save state Go puts in places that aren't kept
by C

List of things to implement in "Go libc"
lwp_create, lwp_tramp, osyield, lwp_park, lwp_unpark, lwp_self, exit, exitThread, open,

closefd, read, write, usleep, raise, raiseproc, setitimer, walltime, nanotime, getcontext,
sigprocmask, sigreturn_tramp, sigaction, sigfwd, sigtramp, mmap, munmap, madvise,

sigaltstack, settls, sysctl, kqueue, kevent, closeonexec.

Know your C ABI:

x0 x0 x1 x2.. x7.. stack

int open(const char *path, int flags, ...);

SIMPLE IMPLEMENTATION: EXIT
x86_64:

arm64:

// Exit the entire program (like C exit)
TEXT runtime·exit(SB),NOSPLIT,$-8
 MOVL code+0(FP), DI // arg 1 - exit status
 MOVL $1, AX // sys_exit
 SYSCALL
 MOVL $0xf1, 0xf1 // crash
 RET

#define SYS_exit 1

// Exit the entire program (like C exit)
TEXT runtime·exit(SB),NOSPLIT,$-8
 MOVD code+0(FP), R0 // arg 1 - exit status
 SVC $SYS_exit
 MOVD $0, R0 // If we're still running,
 MOVD R0, (R0) // crash

Debugging: ktrace
> ktruss -i ./hello
...
 34 1 hello __sigprocmask14(0x3, 0, 0x1840c0) = 0
 34 1 hello __clock_gettime50(0x3, 0xffffffffe8b8) = 0

C ABI? syscalls aren't required to follow that.

Signal handling

g is nil?

^T
Expected:
[3032.0244760] load: 0.64 cmd: cat 1530 [ttyraw] 0.00u 0.01s 0% 12
Got:
Segmentation fault

g:

Best, easiest to search name
goroutine specific accounting

What C ABI says about thread-local storage

Memory area per-thread, each thread gets their own

"mrs tpidr_el0, r0"

lwp_getprivate?

#ifdef TLS_linux
#define TPIDR TPIDR_EL0
#define MRS_TPIDR_R0 WORD $0xd53bd040 // MRS TPIDR_EL0, R0
#endif

#ifdef GOOS_darwin
#define TPIDR TPIDRRO_EL0
#define TLSG_IS_VARIABLE
#define MRS_TPIDR_R0 WORD $0xd53bd060 // MRS TPIDRRO_EL0, R0
#endif

Go dual nature

cgo, using regular thread-local storage, easier to call C

Normal go, assembly, standalone, very incompatible
with C.

g is x28.

SIGNAL HANDLING
Want to pass information to signal handler

Tramples some registers

all the state to recover is in ucontext (ucp)

NetBSD kernel signal delivery...

 tf->tf_reg[0] = ksi->ksi_signo;
 tf->tf_reg[1] = sip;
 tf->tf_reg[2] = ucp;
 tf->tf_reg[28] = ucp; /* put in a callee saved register */

Can build hello world

Questions?

