
Java & Games

A rivalrous case-study from porting Doom 3

Prologue

intro

What is...djoom3?
✘ Cool “temporary” name

○ https://github.com/blackbeard334/djoom3
✘ Why?

○ Java...because?
✘ Lustrum
✘ Ingredients:

○ Java
○ OpenGL/OpenAL(LWJGL)

✘ Questions/remarks/heckles
○ @blackbeard0x14e

https://github.com/blackbeard334/djoom3

intro

What is the Java?
✘ Interpre-piled-ish©
✘ Open source-ish
✘ Signed math
✘ Pass by (reference) value :(

○ Supports Null Pointer Exceptions ;)
✘ Operator Overloading not supported
✘ final is like const, except not really

intro

Seriously though...what is the Java?
✘ JLS - Spec
✘ JDK - Language
✘ JVM

○ GC
○ JIT
○ JMM(middleware)

“
Light it up

Ah, light it up
Another hit erases all the pain

Environment setup

✘ OpenGL dll/linker/macro bullshite
○ 64bit vs 32bit

✘ Visual studio project compatibility
✘ 6 pages [doom3.gpl] Compiling Doom 3/idtech 4 source code
✘ 19 pages DOOM3 COMPILATION INSTRUCTIONS FOR MAC OS X.
✘ Money money money...must be funny...in the rich man’s world!
✘ Scone Scons fiasco...T_T

○ Or chromium...

https://www.katsbits.com/smforum/index.php?topic=896.0
https://fabiensanglard.net/doom3_macosx/index.php

Environment setup

Environment setup

✘ Wizardry
✘ Open source based

✘ Paths...bloody paths
✘ Subtle 32bit vs 64bit

○ Especially for native code

Build tools

Maven vs xmake
✘ Single pom of failure

○ Dependencies
○ Profiles
○ Testing

✘ Project version
○ SNAPSHOT

✘ Dependencies
○ Transitive dependencies yay!

✘ Natives
✘ Testing
✘ Ecosystem
✘ Build servers

Build tools

Compile times

Compile times

Clean & Build:
✘ VS12 - Win 7 25 minutes?
✘ VS12 - Win 10 10 minutes
✘ VS12 - Win 10 /MP 3.5 minutes(100% cpu)
✘ GCC 7.4 10.5 minutes
✘ GCC 7.4 -O2 13 minutes error
✘ GCC 7.4 -O2 redux 12.7 minutes?
✘ GCC 7.4 -O3 13.5 minutes
✘ Java compile time \<0>/ 25 seconds

Start-up times

Jvm warmup + load vs native load
Pre-warmup?

Loading times

1. Warmup + intro
2. Loading till video
3. Start second intro
4. Play!

CPU

✘ CPU threading bonanza
✘ Threading is hard
✘ Thread Safety is expensive(think null checks everywhere)

○ Usually safe/unsafe flavors
○ Atomicity

✘ The bla bla bla question
○ Do games need threads?

■ Amdahl vs Moore
■ Who knows...maybe we’ll get better at programming...again

Garbage Collection

✘ Is GC evil?
○ Well...you kind of already do it manually delete/free
○ Memory fragmentation vs virtual memory?

✘ Unity/Unreal/MK...etc
✘ Embrace the GC…Is It Time to Rewrite the Operating System in Rust?
✘ Concurrency is hard without GC.
✘ Manual memory management in the GC?

○ If you're gonna do it anyways…. Wouldn't you rather get moar
bang for your buck?

https://docs.google.com/file/d/11xz2EBS-BrVi6zu-CpY8fHmGpJDFwrUz/preview
https://youtu.be/HgtRAbE1nBM?start=1804&end=1871

Memory footprint(thus far)

Memory footprint(thus far)

✘ CPU overhead is negligible

✘ Memory overhead...is unavoidable could be better
○ Depends on the GC algorithm

Core language features(e.g. pointers)

Pointers
Macros
Operator overloading T_T
Type safety

Standard libs

Java vs STL
Intrinsics FTW!
Thread safety
Instrumentation API

Debuggability

Conditional bp C++(fast) /data bp
Perfmon/Valgrind
Instrumentation redux

WORA

Write Once...now Run Arsehole Anywhere

Caveat(s):
LWJGL = win + mac + linux

~Console

None...

~Although...

http://www.youtube.com/watch?v=ghMaNyUmpkA

✘ Dev involvement in core language
○ JSR
○ JEP

✘ Once you go JVM, you never go…
✘ Untapped potential

○ Easy, but not simple problems(R. Hickey)

What else?

We have time for 1

Question...

Other questions may be directed at @blackbeard0x14e

