(lntel) _
experience
what's inside”

FUNDAMENTAL TECHNOLOGIES TO WORK
ONFOR CLOUD-NATIVE NETWORKING

nnnnnnnnnnnnnnnnnnn

Cloud-Native Network Functions — My View

* Many small network functions App App App App

* Runs in containers / processes Routing / Switching

* High availability

Server

* Automatic scalability

e Secure

* Deployable at scale Packets

* Really simple _
* Load-balancing
* Routing and/or switching

» Best performance NOT a main

ST Server Server Server

Cloud-Native systems using the Linux stack is NOT a focus of this presentation

Network Platforms Group (intel. 2

Properties Needed

Many small network functions
Runs in containers [/ processes
High availability
Automatic scalability
Secure
Deployable at scale
Really simple
Load-balancing
Routing and/or switching

Good enough performance

HW agnostic — Linux APIs only
Fault isolation

Restartability

Multiple SW versions
Upgradeable during run-time
Many processes per core
Power save

All security features working
Debuggable & observeable
Routing/switching in kernel
Binary compatibility

Works on any standard Linux

Network Platforms Group

Desired System

i W e

Linux with Routing / Switching - =
Core 1 Core 2 Core 3 Core 4

Raw Packets

All drivers in the Linux kernel the key to solving the problem

Network Platforms Group (intel.

Goal for Cloud-Native Dataplane

* Dead-simple, out-of-the-box cloud-native
networking for network functions

App App App App
Linux with XDP

* With the properties outlines previously
« Supported by all major distributions
* Binary backward and forward compatibilty NIC

* With good enough performance

Network Platforms Group (intel.

Features We Cannot Use

HW agnostic — Linux APIs only
Fault isolation

Restartability

Multiple SW versions
Upgradeable during run-time
Many processes per core
Power save

All security features working
Debuggable & observeable
Routing/Switching in kernel
Binary compatibility

Works on any standard Linux

Network Platforms Group

SR-IOV

User-space drivers

Pinned cores & memory
Busy-polling

Huge pages

Shared memory

1-to-1 virtual to physical mappings
>1 crossing user/kernel-space
Monolithic SW

Custom kernel modules
Complete kernel bypass

Hard-coded platform

Linux NIC features << Features of HW NIC

* Metadata and offloadning support for XDP & AF_XDP
* Supporting accelerators
« Making it easy to orchestrate and control

* Managing both the fast path and the slow path (Linux networking stack) using the
Linux stack control plane

« Slicing up a netdev with real HW queues

* Preallocating AF_XDP memory for the containers using Kubernetes
* Queue management

* For deployment at scale

» Packet access library designed for cloud-native and Linux

Network Platforms Group (intel.

Metadata and Offloading

struct metadata {
u6b4 rx_timestamp;

u16 ipv4_hdr;
I

struct metadata { . e
. _ y:
u16 ipv4_hdr; Compller movg $0x2061,(%rsi)

u8 pad[32]; . mov 0x24(%rdi),%eax
_u64 rx_timestamp; movl $0x50035,0x8(%rsi)
struct metadata { I3 movqg $0x100f,0x20(%rsi)
u64 rx_timestamp;

ul6 ipv4_hdr;

ul6 ipv6_hdr;
bool udp_chk_sum;

I

* No mbuf or skbuf needed. Access metadata directly

* Only pay for the metadata you use

« XDP has a JIT, so can be done in run-time

* AF_XDP needs to dynamically link at bind() time or use an offset table

* Accelerators probably will use io_uring. How to support metadata there?

Network Platforms Group

Controlling the Fast Path from Linux

Slow Fast xdp_action xdp_program() {
ip_src = extract_ipv4_src_addr();
Path Path ip_dst = extract_ipv4_dst_addr();

= (A opf._route_lookuplip_src,ip_dst,)

Linux route_to_dst();
i

NIC

* Linux control path sets up actions in HW and/or XDP
« XDP when HW does not support the action

* All packets pass XDP

* Use helpers in XDP
* Reads kernel state or metadata from NIC

« But not many of these exists today

Network Platforms Group

Facilitating Kubernetes Orchestration

Linux

 AF_XDP needs a netdev with real HW queues
* How to create one of those?
* Use Macvlan with add_station support?
* Pod needs to have all AF_XDP memory areas preallocated

* Launch a "pre-process” that then forks off a child that becomes the pod

Network Platforms Group (intel/ | 10

Queue Management: The Focus

S - -
-~ -

Two problems:

Splitting up queues between PFs and VFs in a device

Allocating and freeing queues within a netdev

Network Platforms Group

=

Queue Management: The Focus

Two problems:

Splitting up queues between PFs and VFs in a device

Allocating and freeing queues within a netde

Network Platforms Group

Kernel Design Overview

* New alloc and free ndo:s in driver needed

« Tie into existing interfaces, e.g. netif_set_real_num_rx_queues|)
* Qids can be decided by driver

* For backwards compatibility and encoding queue types

* When used in conjunction with netdev slicing => custom netdevs

Network Platforms Group

=

13

Cloud-Native Packet Access Library

Important properties:

All drivers in kernel space

Linux

Set of small shared libraries

No HW exposed to user space
NIC + Accelerators

Does not force a platform on the users

* No config, launch, or run-time environment in libraries

* Works in both processes and threads in any configuration

No mbuf or the likes exposed to the application

Applications cannot crash each other

Debugability, observability and testability from day one

First optimized for ease-of-use and the right functionality, then optimize for
performance

Network Platforms Group (intel.

14

Conclusions

Cloud-native # appliance or virtual machine

Most of the challenges solved by having all drivers in the kernel

But Linux is not ready for this:

* Metadata and offloading

« Controlling the data plane from the Linux stack
* Orchestration support: splitting up netdevs

* Queue management

New requirements on packet access libraries

* Do we evolve DPDK or do we need a new packet library?

Network Platforms Group

