
fundamental technologies to work
on for cloud-native networking
Magnus Karlsson, Intel

Network Platforms Group

Cloud-Native Network Functions – My View

• Many small network functions

• Runs in containers / processes

• High availability

• Automatic scalability

• Secure

• Deployable at scale

• Really simple

• Load-balancing

• Routing and/or switching

• Best performance NOT a main
driver

2

App

Server

Routing / Switching

App AppApp

ServerServerServer

Load
Balancer

Packets

Cloud-Native systems using the Linux stack is NOT a focus of this presentation

Network Platforms Group

Properties Needed

• HW agnostic – Linux APIs only

• Fault isolation

• Restartability

• Multiple SW versions

• Upgradeable during run-time

• Many processes per core

• Power save

• All security features working

• Debuggable & observeable

• Routing/switching in kernel

• Binary compatibility

• Works on any standard Linux

3

• Many small network functions

• Runs in containers / processes

• High availability

• Automatic scalability

• Secure

• Deployable at scale

• Really simple

• Load-balancing

• Routing and/or switching

• Good enough performance

Requirements Properties

Network Platforms Group

App
App

App

Desired System

4

App

Core 1

Linux with Routing / Switching

Core 2 Core 3 Core 4

App
App

App
App

App
App

App
App

App
App

App
App

User App

Packet
Access
Library

App =

Raw Packets

All drivers in the Linux kernel the key to solving the problem

Network Platforms Group

Goal for Cloud-Native Dataplane

• Dead-simple, out-of-the-box cloud-native
networking for network functions

• With the properties outlines previously

• Supported by all major distributions

• Binary backward and forward compatibilty

• With good enough performance

5

App

NIC

Linux with XDP

App AppApp

Network Platforms Group

Features We Cannot Use

• SR-IOV

• User-space drivers

• Pinned cores & memory

• Busy-polling

• Huge pages

• Shared memory

• 1-to-1 virtual to physical mappings

• >1 crossing user/kernel-space

• Monolithic SW

• Custom kernel modules

• Complete kernel bypass

• Hard-coded platform

6

• HW agnostic – Linux APIs only

• Fault isolation

• Restartability

• Multiple SW versions

• Upgradeable during run-time

• Many processes per core

• Power save

• All security features working

• Debuggable & observeable

• Routing/Switching in kernel

• Binary compatibility

• Works on any standard Linux

DESIRED NOT AN OPTION

Network Platforms Group

Linux NIC features << Features of HW NIC

In Linux we need to develop:

• Metadata and offloadning support for XDP & AF_XDP

• Supporting accelerators

• Making it easy to orchestrate and control

• Managing both the fast path and the slow path (Linux networking stack) using the
Linux stack control plane

• Slicing up a netdev with real HW queues

• Preallocating AF_XDP memory for the containers using Kubernetes

• Queue management

• For deployment at scale

• Packet access library designed for cloud-native and Linux

7

Network Platforms Group

Metadata and Offloading

• No mbuf or skbuf needed. Access metadata directly

• Only pay for the metadata you use

• XDP has a JIT, so can be done in run-time

• AF_XDP needs to dynamically link at bind() time or use an offset table

• Accelerators probably will use io_uring. How to support metadata there?

8

struct metadata {
u64 rx_timestamp;
u16 ipv4_hdr;
u16 ipv6_hdr;
bool udp_chk_sum;

};

struct metadata {
u64 rx_timestamp;
u16 ipv4_hdr;

};
SW

HW

struct metadata {
u16 ipv4_hdr;
u8 pad[32];
u64 rx_timestamp;

};

BTF

Binary:
movq $0x2061,(%rsi)
mov 0x24(%rdi),%eax
movl $0x50035,0x8(%rsi)
movq $0x100f,0x20(%rsi)

Compiler

Network Platforms Group

Controlling the Fast Path from Linux

• Linux control path sets up actions in HW and/or XDP

• XDP when HW does not support the action

• All packets pass XDP

• Use helpers in XDP

• Reads kernel state or metadata from NIC

• But not many of these exists today

9

Slow
Path

NIC

Linux

Stack XDP

Fast
Path

xdp_action xdp_program() {
ip_src = extract_ipv4_src_addr();
ip_dst = extract_ipv4_dst_addr();
:
bpf_route_lookup(ip_src, ip_dst,...);
route_to_dst();

};

Network Platforms Group

Linux

Facilitating Kubernetes Orchestration

• AF_XDP needs a netdev with real HW queues

• How to create one of those?

• Use Macvlan with add_station support?

• Pod needs to have all AF_XDP memory areas preallocated

• Launch a ”pre-process” that then forks off a child that becomes the pod

10

netdev

netdev

netdev

netdev

Pod

netdev

Network Platforms Group

Queue Management: The Focus

11

Two problems:

Splitting up queues between PFs and VFs in a device

Allocating and freeing queues within a netdev

Queues
VFs

PFs

PF VF VF

64 Q 16 Q 16 Q

PF

48 Q VF

16 Q

PF

48 Q

netdev

48 Q

netdev

Linux
stack

XDP
app

AF_XDP
app

Network Platforms Group

Queue Management: The Focus

12

Two problems:

Splitting up queues between PFs and VFs in a device

Allocating and freeing queues within a netdev

Queues
VFs

PFs

PF VF VF

64 Q 16 Q 16 Q

PF

48 Q VF

16 Q

PF

48 Q

netdev

48 Q

netdev

Linux
stack

XDP
app

AF_XDP
app

Network Platforms Group

Kernel Design Overview

13

• New alloc and free ndo:s in driver needed

• Tie into existing interfaces, e.g. netif_set_real_num_rx_queues()

• Qids can be decided by driver

• For backwards compatibility and encoding queue types

• When used in conjunction with netdev slicing => custom netdevs

Queue Manager

Device Drivers

Linux Stack

XDP

AF_XDP / Libbpf /
Ethtool

NETLINK

Network Platforms Group

Cloud-Native Packet Access Library

Important properties:

• All drivers in kernel space

• Set of small shared libraries

• No HW exposed to user space

• Does not force a platform on the users

• No config, launch, or run-time environment in libraries

• Works in both processes and threads in any configuration

• No mbuf or the likes exposed to the application

• Applications cannot crash each other

• Debugability, observability and testability from day one

• First optimized for ease-of-use and the right functionality, then optimize for
performance

14

App

NIC + Accelerators

Linux

AF_XDP Io_uring Virtio-net

mempool

pkt access

crypto

Network Platforms Group

Conclusions

• Cloud-native ≠ appliance or virtual machine

• Most of the challenges solved by having all drivers in the kernel

• But Linux is not ready for this:

• Metadata and offloading

• Controlling the data plane from the Linux stack

• Orchestration support: splitting up netdevs

• Queue management

• New requirements on packet access libraries

• Do we evolve DPDK or do we need a new packet library?

15

