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Outline
§ Part 1: The Hardware Specialization Era

–And its impact on SDR applications

§ Part 2: Task Scheduling on Heterogeneous Platforms
–STOMP: Scheduling Techniques Optimization

in heterogeneous Multi-Processors

§ Part 3: New Scheduling Techniques
–Evaluation and future work
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The Hardware Specialization Era Is Already Here…
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§ Heterogeneous system-on-chips (SoCs) are single chips comprising of many processing 
elements (PEs) of different nature like CPUs, GPUs and hardware accelerators

§ Heterogeneous SoCs are extensively used today
– Adopted by domains historically dominated by

homogeneous architectures 
– Exploit heterogeneous characteristic of applications
– Significant performance and power efficiency gains

Source: https://www.sigarch.org/mobile-socs/

Conventional schedulers are not optimized for the 
characteristics of heterogeneous chips which calls 

for more intelligent and efficient scheduling
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SDR and the Impact of Specialization & Task Scheduling
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§ A typical SDR application may consist of
multiple and disparate kernels

§ The underlying hardware may also provide
accelerators for some or all of them

§ However, in frameworks like GNU Radio, the
scheduler mostly “ignores” these degrees of
heterogeneity – which may provide significant benefits when properly exploited

Transmitter
Receiver

FFT

FFT

Viterbi

Synchronization Equalization

Carrier Allocation

[1] B. Bloessl, M. Müller, M. Hollick. “Benchmarking and Profiling the GNURadio Scheduler.” Proceedings of the 9th GNU Radio Conference. 2019.

Prior works have shown that there is significant 
room for improvement in the GNU Radio scheduler
– E.g. via simple scheduling optimizations

to increase cache effectiveness [1]
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The Big Picture (Where Does This Talk Fit In?)
DSSoC’s Full-Stack Integration 
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Heterogeneous architecture 
composed of Processor Elements:
• CPUs
• Graphics processing units
• Tensor product units
• Neuromorphic units
• Accelerators (e.g., FFT)
• DSPs
• Programmable logic
• Math accelerators
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DSSoC’s Full-Stack Integration 

Task scheduling of
SDR kernels in
heterogeneous chips
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STOMP
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§ STOMP (Scheduling Techniques Optimization in heterogeneous Multi-Processors) is an open-
source customizable Python-based simulator for fast prototyping of SoC scheduling policies

– Check it out: https://github.com/IBM/stomp

§ It consists of three main elements:
– Tasks: units of work (aka jobs, threads, processes) 

• Executed in the heterogeneous SoC
• Typically described as task types (e.g. fft, decoder, etc.)

– Servers: processing units that can execute tasks
• Different servers execute tasks with different “efficiency” 
• E.g. an FFT task on DSP accelerator vs general-purpose CPU

– Scheduler: dynamically maps tasks to servers during the execution
• It supports user-defined scheduler algorithms

task
task
task
task

…

Server 1
(e.g. core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

Scheduler

Task Arrival

Processing
Element

https://github.com/IBM/stomp
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STOMP Overview
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task
task
task
task

…

Server 1
(e.g. CPU core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

Task arrival
• Probabilistic

(e.g. exponential)
• Realistic (trace-based)

Task attributes
• Service time (probabilistic or trace-based)
• Target processing elements

For example:
1. Accelerator
2. GPU
3. CPU core

• Power consumption
For example:

1. Accelerator: 100 mW
2. GPU: 400 mW
3. CPU core: 900 mW

• Others

Scheduler

“Pluggable” Scheduling Policy
• The user is only required to implement the abstract 

Python class BaseSchedulingPolicy – for example:

Future work

JSON

Python

Processing
Element
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STOMP Intrinsic Operation
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§ STOMP consists of two integral parts:
– Meta scheduler (“META”) → pre-processor that

aids in the scheduling decision
– Task scheduler (“SCHED”) → assigns ready tasks

to available servers (PEs) to optimize the overall
response time 

§ META and SCHED communicate via
two queues: ready and completed

§ Input: directed acyclic-graphs (DAGs) of
multiple tasks with associated real-time
constraints (priority and deadline)
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Meta Scheduler (“META”)
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§ META tracks heuristics associated with the DAG:
– Task dependencies, DAG deadline and

available slack, DAG and tasks priority
§ Then orders ready tasks based on a “rank”

– Can be computed in different ways
– For example, as a function of task’s priority,

slack and worst-case execution time (WCET)

§ Drops non-critical priority DAGs if deadline is missed
– All remaining tasks in the DAG are dropped
– Help reduce task traffic in the system
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𝑇𝑎𝑠𝑘% 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦

𝑇𝑎𝑠𝑘% 𝑆𝑙𝑎𝑐𝑘 − 𝑇𝑎𝑠𝑘% 𝑊𝐶𝐸𝑇
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Task Scheduler (“SCHED”)
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The user primarily defines the assignment actions:
(here the task is scheduled to the fastest server type)

from stomp import BaseSchedulingPolicy

class SchedulingPolicy(BaseSchedulingPolicy):

def init(self, servers, stomp_stats, stomp_params):
...

def remove_task_from_server(self, sim_time, server):
...

def assign_task_to_server(self, sim_time, tasks):

if (len(tasks) == 0):
# There aren't tasks to serve
return None

# Determine task's best scheduling option (target server)
target_server_type = tasks[0].mean_service_time_list[0][0]

# Look for an available server to process the task
for server in self.servers:
if (server.type == target_server_type and not server.busy):
# Pop task in queue's head and assign it to server
server.assign_task(sim_time, tasks.pop(0))
return server

return None
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Simulation Parameters and Configuration

13February 2020

§ Example stomp.json configuration file:

"general" : {

"logging_level":        "INFO",

"random_seed":          0,

"working_dir":          ".",

"basename":             "",
"pre_gen_arrivals":     false,

"input_trace_file":     "",

"output_trace_file":    ""

},

"simulation" : {

"sched_policy_module":  "policies.simple_policy_ver3",

"max_tasks_simulated":  10000,

"mean_arrival_time":    50,

"distribution":         "Poisson",
"power_mgmt_enabled":   false,

"max_queue_size":       1000000,

"servers" : {
"cpu_core" :  { "count" : 8 },

"gpu" :       { "count" : 2 },

"fft_accel" : { "count" : 1 }

},

"tasks" : {

"fft" : {

"mean_service_time" : {

"cpu_core"  : 500,
"gpu"       : 100,

"fft_accel" : 10

},

"stdev_service_time" : {
"cpu_core"  : 5.0,

"gpu"       : 1.0,

"fft_accel" : 0.1

}

},
...
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Example Using a Simple DAG
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§ Input: priority-1 5-node DAG with varying kernels 
– Deadline of DAG is set to 1100 units of time

§ Time 0: META pushes Task 0 to ready queue with a rank

§ Task 0 completes execution in 10 units of
time because it was run on the accelerator

– META then calculates the remaining slack
of the DAG and next available tasks

5-node DAG

Tasks’ Execution Times

Task CPU GPU Accel

FFT 500 100 10

Convolution 200 150 10

Decoder 200 150 None

Conv

Conv

𝑅𝑎𝑛𝑘6 =
1

500 − 500
= ∞

DAG’s priority
𝑅𝑎𝑛𝑘% =

𝑇𝑎𝑠𝑘% 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦
𝑇𝑎𝑠𝑘% 𝑆𝑙𝑎𝑐𝑘 − 𝑇𝑎𝑠𝑘% 𝑊𝐶𝐸𝑇
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Example Using a Simple DAG (cont’d)
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§ Time 10: Task 1 and Task 2 become ready
– Scheduled in the order of their rank
– Task 1 has a higher rank than Task 2

• Rank1 = 1/(363-200) = 1/163
• Rank2 = 1/(545-200) = 1/345

– This process continues for all tasks in the DAG

§ Multi-DAG execution:
– Multiple DAGs arrive consecutively
– At every stage, ready tasks are scheduled

in rank order across all DAGs

5-node DAG

Tasks’ Execution Times

Task CPU GPU Accel

FFT 500 100 10

Convolution 200 150 10

Decoder 200 150 None

Conv

Conv
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Evaluation
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§ DAG trace: 1,000 5- and 10-node static DAGs
– Priority: 1 or 2 assigned randomly
– Deadline: critical path length considering worst-case execution times

§ Task types:
– FFT, Convolution, Decoder

§ Metric of evaluation:
– Met deadline

§ Baseline task schedulers with META dependency tracking only
– TS1: non-blocking task scheduler
– TS2: non-blocking task scheduler assuming tasks ahead in queue are scheduled 

§ TS2 scheduler with both META dependency tracking and pre-processing
– MS1: rank based on task’s deadline and average execution time, and priority
– MS2: rank based on task’s deadline and maximum execution time, and priority
– MS3: rank based on task’s available slack and maximum execution time, and priority

Task CPU GPU Accel

FFT 500 100 10

Convolution 200 150 10

Decoder 200 150 None
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Evaluation: Met Deadline
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Running STOMP
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Summary and Path Forward
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§ STOMP is in active development with a number of additional items being worked on
– More complete input trace format, more statistics and data about the runs

§ And there are some extensions planned
– Power consumption models and power management features
– Machine learning-based scheduling policies

§ And work to move from the abstract to the more concrete
– Analysis of GNU Radio workloads to generate more realistic DAG traces

§ But STOMP already provides plenty of opportunity and capability to explore the problem 
space – readily available now:

https://github.com/IBM/stomp
(check out dev for leading-edge features)  

https://github.com/IBM/stomp
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Smart Scheduler Roadmap and Big Picture
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§ STOMP is only intended for early-stage evaluation of smart scheduling policies

§ Ultimately these policies should be ported to real setups,
e.g. as part of the GNU Radio run-time environment 

– GNU Radio makes run-time decisions using the
specified policy (originally developed in STOMP)

§ We can also use existing software middleware
frameworks (e.g. OpenCL, OpenMP, OpenSSL)
to prototype scheduling policies

– Target architectures: IBM P9, NVIDIA Xavier
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Evaluation: Slack Available
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STOMP Inputs
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§ Domain-specific applications → control flow graphs

§ Control flow graphs are divided into directed acyclic-graphs
(DAGs) of multiple tasks

– Task: unit of work that can execute on a server (PE)

§ DAG trace as input
– Compile-time: applications are known and DAGs are static
– Runtime: DAGs arrive dynamically with variable arrival rate

§ Each DAG has real-time constraints associated to it
– A priority and a deadline
– Determined at run-time based on the

environment and functions of each DAG

Control Flow Graph

DAG DAG

DAG
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Scheduling Mechanism

25February 2020

§ When a DAG arrives, META pushes ready tasks to the
ready queue ordered by rank

– SCHED then schedules them onto servers (PEs)
§ Once a task completes:

– SCHED pushes it into the completed queue
– Task ID and execution time are passed back to META
– META pops the completed task and finds its parent DAG

§ META checks for resolved dependencies and finds ready
tasks, then:

– Calculates deadline of the new ready tasks
– Assigns new priority based on the remaining slack
– Updates rank of ready tasks and re-orders them
– If remaining slack is negative and task

has non-critical priority, drops the DAG
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