
IBM Research

TASK SCHEDULING OF SDR KERNELS
IN HETEROGENEOUS CHIPS
OPPORTUNITIES AND CHALLENGES

Augusto Vega1

Aporva Amarnath2

Alper Buyuktosunoglu1

Hubertus Franke1

John-David Wellman1

Pradip Bose1

1 IBM T. J. Watson Research Center
2 University of Michigan

IBM Research

Acknowledgment

§ Thanks to the many IBM colleagues who contribute to and support different aspects of this
work + our esteemed university collaborators at Harvard, Columbia, and UIUC (Profs. David
Brooks, Vijay Janapa Reddi, Gu-Yeon Wei, Luca Carloni, Ken Shepard, Sarita Adve, Vikram
Adve, Sasa Misailovic) + many brilliant graduate students and postdocs!

§ Special thanks to Dr. Thomas Rondeau, Program Manager of the DARPA MTO DSSoC Program

2February 2020

This research was developed, in part, with funding from the Defense Advanced Research Projects
Agency (DARPA). The views, opinions and/or findings expressed are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the
U.S. Government. This document is approved for public release: distribution unlimited.

IBM Research

Outline
§ Part 1: The Hardware Specialization Era

–And its impact on SDR applications

§ Part 2: Task Scheduling on Heterogeneous Platforms
–STOMP: Scheduling Techniques Optimization

in heterogeneous Multi-Processors

§ Part 3: New Scheduling Techniques
–Evaluation and future work

3February 2020

IBM Research

The Hardware Specialization Era Is Already Here…

4February 2020

§ Heterogeneous system-on-chips (SoCs) are single chips comprising of many processing
elements (PEs) of different nature like CPUs, GPUs and hardware accelerators

§ Heterogeneous SoCs are extensively used today
– Adopted by domains historically dominated by

homogeneous architectures
– Exploit heterogeneous characteristic of applications
– Significant performance and power efficiency gains

Source: https://www.sigarch.org/mobile-socs/

Conventional schedulers are not optimized for the
characteristics of heterogeneous chips which calls

for more intelligent and efficient scheduling

IBM Research

SDR and the Impact of Specialization & Task Scheduling

5February 2020

§ A typical SDR application may consist of
multiple and disparate kernels

§ The underlying hardware may also provide
accelerators for some or all of them

§ However, in frameworks like GNU Radio, the
scheduler mostly “ignores” these degrees of
heterogeneity – which may provide significant benefits when properly exploited

Transmitter
Receiver

FFT

FFT

Viterbi

Synchronization Equalization

Carrier Allocation

[1] B. Bloessl, M. Müller, M. Hollick. “Benchmarking and Profiling the GNURadio Scheduler.” Proceedings of the 9th GNU Radio Conference. 2019.

Prior works have shown that there is significant
room for improvement in the GNU Radio scheduler
– E.g. via simple scheduling optimizations

to increase cache effectiveness [1]

IBM Research 6February 2020

The Big Picture (Where Does This Talk Fit In?)
DSSoC’s Full-Stack Integration

Application

In
te

gr
at

ed
 p

er
fo

rm
an

ce
 a

na
ly

sis

Development Environment and Programming
Languages

Libraries

Operating System

Co
m

pi
le

r,
lin

ke
r,

as
se

m
bl

er

In
te

lli
ge

nt
 s

ch
ed

ul
in

g/
ro

ut
in

g

Heterogeneous architecture
composed of Processor Elements:
• CPUs
• Graphics processing units
• Tensor product units
• Neuromorphic units
• Accelerators (e.g., FFT)
• DSPs
• Programmable logic
• Math accelerators

D
ec

ou
pl

ed
 S

of
tw

ar
e

de
ve

lo
pm

en
t

H
ar

dw
ar

e-
So

ft
w

ar
e

Co
-d

es
ig

n

M
ed

iu
m

 A
cc

es
s

Co
nt

ro
l

DSSoC’s Full-Stack Integration

Task scheduling of
SDR kernels in
heterogeneous chips

IBM Research

Outline
§ Part 1: The Hardware Specialization ERA

–And its impact on SDR applications

§ Part 2: Task Scheduling on Heterogeneous Platforms
–STOMP: Scheduling Techniques Optimization

in heterogeneous Multi-Processors

§ Part 3: New Scheduling Techniques
–Evaluation and future work

7February 2020

IBM Research

STOMP

8February 2020

§ STOMP (Scheduling Techniques Optimization in heterogeneous Multi-Processors) is an open-
source customizable Python-based simulator for fast prototyping of SoC scheduling policies

– Check it out: https://github.com/IBM/stomp

§ It consists of three main elements:
– Tasks: units of work (aka jobs, threads, processes)

• Executed in the heterogeneous SoC
• Typically described as task types (e.g. fft, decoder, etc.)

– Servers: processing units that can execute tasks
• Different servers execute tasks with different “efficiency”
• E.g. an FFT task on DSP accelerator vs general-purpose CPU

– Scheduler: dynamically maps tasks to servers during the execution
• It supports user-defined scheduler algorithms

task
task
task
task

…

Server 1
(e.g. core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

Scheduler

Task Arrival

Processing
Element

https://github.com/IBM/stomp

IBM Research

STOMP Overview

9February 2020

task
task
task
task

…

Server 1
(e.g. CPU core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

Task arrival
• Probabilistic

(e.g. exponential)
• Realistic (trace-based)

Task attributes
• Service time (probabilistic or trace-based)
• Target processing elements

For example:
1. Accelerator
2. GPU
3. CPU core

• Power consumption
For example:

1. Accelerator: 100 mW
2. GPU: 400 mW
3. CPU core: 900 mW

• Others

Scheduler

“Pluggable” Scheduling Policy
• The user is only required to implement the abstract

Python class BaseSchedulingPolicy – for example:

Future work

JSON

Python

Processing
Element

IBM Research

STOMP Intrinsic Operation

10February 2020

§ STOMP consists of two integral parts:
– Meta scheduler (“META”) → pre-processor that

aids in the scheduling decision
– Task scheduler (“SCHED”) → assigns ready tasks

to available servers (PEs) to optimize the overall
response time

§ META and SCHED communicate via
two queues: ready and completed

§ Input: directed acyclic-graphs (DAGs) of
multiple tasks with associated real-time
constraints (priority and deadline)

task
task
task
task

…

Server 1
(e.g. CPU core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

SCHED

META

Re
ad

y
Qu

eu
e

task
task
task
task

…

Co
m

pl
et

ed
 Q

ue
ue

SCHEDULER
(OS level)

HW SoC

Application
Level Scheduler Overview

IBM Research

Meta Scheduler (“META”)

11February 2020

§ META tracks heuristics associated with the DAG:
– Task dependencies, DAG deadline and

available slack, DAG and tasks priority
§ Then orders ready tasks based on a “rank”

– Can be computed in different ways
– For example, as a function of task’s priority,

slack and worst-case execution time (WCET)

§ Drops non-critical priority DAGs if deadline is missed
– All remaining tasks in the DAG are dropped
– Help reduce task traffic in the system

task
task
task
task

…

Server 1
(e.g. CPU core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

SCHED

META

Re
ad

y
Qu

eu
e

task
task
task
task

…

Co
m

pl
et

ed
 Q

ue
ue

SCHEDULER
(OS level)

HW SoC

Application
Level Meta Scheduler

𝑅𝑎𝑛𝑘% =
𝑇𝑎𝑠𝑘% 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦

𝑇𝑎𝑠𝑘% 𝑆𝑙𝑎𝑐𝑘 − 𝑇𝑎𝑠𝑘% 𝑊𝐶𝐸𝑇

IBM Research

Task Scheduler (“SCHED”)

12February 2020

The user primarily defines the assignment actions:
(here the task is scheduled to the fastest server type)

from stomp import BaseSchedulingPolicy

class SchedulingPolicy(BaseSchedulingPolicy):

def init(self, servers, stomp_stats, stomp_params):
...

def remove_task_from_server(self, sim_time, server):
...

def assign_task_to_server(self, sim_time, tasks):

if (len(tasks) == 0):
There aren't tasks to serve
return None

Determine task's best scheduling option (target server)
target_server_type = tasks[0].mean_service_time_list[0][0]

Look for an available server to process the task
for server in self.servers:
if (server.type == target_server_type and not server.busy):
Pop task in queue's head and assign it to server
server.assign_task(sim_time, tasks.pop(0))
return server

return None

task
task
task
task

…

Server 1
(e.g. CPU core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

SCHED

META

Re
ad

y
Qu

eu
e

task
task
task
task

…

Co
m

pl
et

ed
 Q

ue
ue

SCHEDULER
(OS level)

HW SoC

Application
Level

Invoked by SCHED
each time it schedules
a task to a server

IBM Research

Simulation Parameters and Configuration

13February 2020

§ Example stomp.json configuration file:

"general" : {

"logging_level": "INFO",

"random_seed": 0,

"working_dir": ".",

"basename": "",
"pre_gen_arrivals": false,

"input_trace_file": "",

"output_trace_file": ""

},

"simulation" : {

"sched_policy_module": "policies.simple_policy_ver3",

"max_tasks_simulated": 10000,

"mean_arrival_time": 50,

"distribution": "Poisson",
"power_mgmt_enabled": false,

"max_queue_size": 1000000,

"servers" : {
"cpu_core" : { "count" : 8 },

"gpu" : { "count" : 2 },

"fft_accel" : { "count" : 1 }

},

"tasks" : {

"fft" : {

"mean_service_time" : {

"cpu_core" : 500,
"gpu" : 100,

"fft_accel" : 10

},

"stdev_service_time" : {
"cpu_core" : 5.0,

"gpu" : 1.0,

"fft_accel" : 0.1

}

},
...

IBM Research

Example Using a Simple DAG

14February 2020

§ Input: priority-1 5-node DAG with varying kernels
– Deadline of DAG is set to 1100 units of time

§ Time 0: META pushes Task 0 to ready queue with a rank

§ Task 0 completes execution in 10 units of
time because it was run on the accelerator

– META then calculates the remaining slack
of the DAG and next available tasks

5-node DAG

Tasks’ Execution Times

Task CPU GPU Accel

FFT 500 100 10

Convolution 200 150 10

Decoder 200 150 None

Conv

Conv

𝑅𝑎𝑛𝑘6 =
1

500 − 500
= ∞

DAG’s priority
𝑅𝑎𝑛𝑘% =

𝑇𝑎𝑠𝑘% 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦
𝑇𝑎𝑠𝑘% 𝑆𝑙𝑎𝑐𝑘 − 𝑇𝑎𝑠𝑘% 𝑊𝐶𝐸𝑇

IBM Research

Example Using a Simple DAG (cont’d)

15February 2020

§ Time 10: Task 1 and Task 2 become ready
– Scheduled in the order of their rank
– Task 1 has a higher rank than Task 2

• Rank1 = 1/(363-200) = 1/163
• Rank2 = 1/(545-200) = 1/345

– This process continues for all tasks in the DAG

§ Multi-DAG execution:
– Multiple DAGs arrive consecutively
– At every stage, ready tasks are scheduled

in rank order across all DAGs

5-node DAG

Tasks’ Execution Times

Task CPU GPU Accel

FFT 500 100 10

Convolution 200 150 10

Decoder 200 150 None

Conv

Conv

IBM Research

Outline
§ Part 1: The Hardware Specialization ERA

–And its impact on SDR applications

§ Part 2: Task Scheduling on Heterogeneous Platforms
–STOMP: Scheduling Techniques Optimization

in heterogeneous Multi-Processors

§ Part 3: New Scheduling Techniques
–Evaluation and future work

16February 2020

IBM Research

Evaluation

17February 2020

§ DAG trace: 1,000 5- and 10-node static DAGs
– Priority: 1 or 2 assigned randomly
– Deadline: critical path length considering worst-case execution times

§ Task types:
– FFT, Convolution, Decoder

§ Metric of evaluation:
– Met deadline

§ Baseline task schedulers with META dependency tracking only
– TS1: non-blocking task scheduler
– TS2: non-blocking task scheduler assuming tasks ahead in queue are scheduled

§ TS2 scheduler with both META dependency tracking and pre-processing
– MS1: rank based on task’s deadline and average execution time, and priority
– MS2: rank based on task’s deadline and maximum execution time, and priority
– MS3: rank based on task’s available slack and maximum execution time, and priority

Task CPU GPU Accel

FFT 500 100 10

Convolution 200 150 10

Decoder 200 150 None

IBM Research

Evaluation: Met Deadline

18February 2020

29
%

64
%

66
%

63
%

65
% 71

%

83
%

83
%

82
%

82
%

70
%

92
%

93
%

93
%

94
%

94
% 99

%

99
%

99
%

99
%

26
%

64
% 72

%

72
% 81

%

67
%

83
% 89

%

91
%

94
%

68
%

95
% 98
%

99
%

10
0%

95
% 99

%

10
0%

10
0%

10
0%

TS1 TS2 MS1 MS2 MS3 TS1 TS2 MS1 MS2 MS3 TS1 TS2 MS1 MS2 MS3 TS1 TS2 MS1 MS2 MS3

52 56 60 64

%
 D

A
G

s
M

et
 D

ea
dl

in
e

Mean Arrival Time

Priority 1 Priority 2

MS3 meets deadline for 33% and 5% more
tasks than TS1 and TS2, respectively

IBM Research

Running STOMP

19February 2020

IBM Research

Summary and Path Forward

20February 2020

§ STOMP is in active development with a number of additional items being worked on
– More complete input trace format, more statistics and data about the runs

§ And there are some extensions planned
– Power consumption models and power management features
– Machine learning-based scheduling policies

§ And work to move from the abstract to the more concrete
– Analysis of GNU Radio workloads to generate more realistic DAG traces

§ But STOMP already provides plenty of opportunity and capability to explore the problem
space – readily available now:

https://github.com/IBM/stomp
(check out dev for leading-edge features)

https://github.com/IBM/stomp

IBM Research

Thank You!

IBM T. J. Watson Research Center
Photo by Balthazar Korab

Source: http://www.shorpy.com/node/15488

ajvega@us.ibm.com https://github.com/augustojv

IBM Research

threads

CPU

kernels

GPU

device

Accel.
…

Scheduling
Policy

GNU Radio Kernels
sync_long

decoder

fft

equalizer

mapper

sync_short

GNU Radio Runtime

service

APIs

Backends

Smart Scheduler Roadmap and Big Picture

22February 2020

§ STOMP is only intended for early-stage evaluation of smart scheduling policies

§ Ultimately these policies should be ported to real setups,
e.g. as part of the GNU Radio run-time environment

– GNU Radio makes run-time decisions using the
specified policy (originally developed in STOMP)

§ We can also use existing software middleware
frameworks (e.g. OpenCL, OpenMP, OpenSSL)
to prototype scheduling policies

– Target architectures: IBM P9, NVIDIA Xavier

IBM Research

Evaluation: Slack Available

23February 2020

-4
9%

11
%

11
%

8% 7% 13
%

30
%

31
%

28
%

24
%

17
%

40
%

42
%

39
%

38
%

39
% 47

%

49
%

45
%

45
%

-5
6%

10
%

19
%

20
% 28

%

12
%

30
% 36

% 40
% 43
%

16
%

41
% 46

%

48
%

51
%

40
% 48

% 51
%

53
%

54
%

-60%

-40%

-20%

0%

20%

40%

60%

TS1 TS2 MS1 MS2 MS3 TS1 TS2 MS1 MS2 MS3 TS1 TS2 MS1 MS2 MS3 TS1 TS2 MS1 MS2 MS3

52 56 60 64

%
Sl

ac
k

A
va

ila
bl

e

Mean Arrival TIme

Priority 1 Priority 2

MS3 results in 35% and 10% more slack
than TS1 and TS2, respectively

IBM Research

STOMP Inputs

24February 2020

§ Domain-specific applications → control flow graphs

§ Control flow graphs are divided into directed acyclic-graphs
(DAGs) of multiple tasks

– Task: unit of work that can execute on a server (PE)

§ DAG trace as input
– Compile-time: applications are known and DAGs are static
– Runtime: DAGs arrive dynamically with variable arrival rate

§ Each DAG has real-time constraints associated to it
– A priority and a deadline
– Determined at run-time based on the

environment and functions of each DAG

Control Flow Graph

DAG DAG

DAG

IBM Research

Scheduling Mechanism

25February 2020

§ When a DAG arrives, META pushes ready tasks to the
ready queue ordered by rank

– SCHED then schedules them onto servers (PEs)
§ Once a task completes:

– SCHED pushes it into the completed queue
– Task ID and execution time are passed back to META
– META pops the completed task and finds its parent DAG

§ META checks for resolved dependencies and finds ready
tasks, then:

– Calculates deadline of the new ready tasks
– Assigns new priority based on the remaining slack
– Updates rank of ready tasks and re-orders them
– If remaining slack is negative and task

has non-critical priority, drops the DAG

task
task
task
task

…

Server 1
(e.g. CPU core)

Server 2
(e.g. GPU)

Server N
(e.g. accel.)

…

SCHED

META

Re
ad

y
Qu

eu
e

task
task
task
task

…

Co
m

pl
et

ed
 Q

ue
ue

SCHEDULER
(OS level)

HW SoC

Application
Level Scheduler Overview

