
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Striving for SDR Performance Portability
in the Era of Heterogeneous SoCs

Jeffrey S. Vetter
Seyong Lee
Mehmet Belviranli
Jungwon Kim
Richard Glassbrook
Abdel-Kareem Moadi
Seth Hitefield

FOSDEM
Brussels
2 Feb 2020

ORNL is managed by UT-Battelle
for the US Department of Energy http://ft.ornl.gov vetter@computer.org

http://ft.ornl.gov/
mailto:vetter@computer.org

2727

Highlights

• Architectural specialization
• Performance portability of applications and software
• DSSoC ORNL project investigating on performance portability of

SDR
– Understand applications and target architectures
– Use open programming models (e.g., OpenMP, OpenACC, OpenCL)
– Develop intelligent runtime systems

• Goal: scale applications from Qualcomm Snapdragon to DoE
Summit Supercomputer with minimal programmer effort

37

Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition
Period

6th wave

4646

Predictions for Transition Period

Optimize Software and
Expose New

Hierarchical Parallelism

• Redesign software to
boost performance
on upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

119

Complex architectures yield…

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …
Memory use,
coalescing Data orchestration Fine grained parallelism Hardware features

Complex
Programming

Models

120120

During this Sixth Wave transition, Complexity is our major challenge!

Design: How do we design
future systems so that they

are better than current
systems on mission

applications?

•Entirely possible that the
new system will be slower
than the old system!

•Expect ‘disaster’
procurements

Programmability: How do we
design applications with

some level of performance
portability?

•Software lasts much longer
than transient hardware
platforms

•Adapt or die

DARPA Domain-Specific System on a Chip (DSSoC) Program
Getting the best out of specialization when we need programmability

DSSoC’s Full-Stack Integration

Application

In
te

gr
at

ed
 p

er
fo

rm
an

ce
 a

na
ly

sis

Development Environment and Programming
Languages

Libraries

Operating System

Co
m

pi
le

r,
lin

ke
r,

as
se

m
bl

er

In
te

llig
en

t s
ch

ed
ul

in
g/

ro
ut

in
g

Heterogeneous architecture
composed of Processor Elements:
• CPUs
• Graphics processing units
• Tensor product units
• Neuromorphic units
• Accelerators (e.g., FFT)
• DSPs
• Programmable logic
• Math accelerators

De
co

up
le

d
So

ftw
ar

e
de

ve
lo

pm
en

t
Ha

rd
w

ar
e-

So
ftw

ar
e

Co
-d

es
ig

n

M
ed

iu
m

 A
cc

es
s

Co
nt

ro
l

Looking at how Hardware/Software co-design is an enabler for efficient use of processing power

Three Optimization Areas
1. Design time
2. Run time
3. Compile time

Addressed via five program areas
1. Intelligent scheduling
2. Domain representations
3. Software
4. Medium access control (MAC)
5. Hardware integration

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

DARPA ERI DSSoC Program: Dr. Tom Rondeau

130

DSSoC ORNL Project Overview

131

Development Lifecycle

Applications

•Create scalable
application Aspen models
manually, with static or
dynamic analysis, or using
historical information

Ontologies

•Ontologies based on
Aspen models using
statistical and machine
learning techniques

Programming
systems

•Programming systems built
to support ontologies

•Query Aspen models and
PFU for automatic code
generation, optimization,
etc.

Runtime and
Scheduling

•Intelligent runtime
scheduling uses models
and PFU to inform
dynamic decisions

•Dynamic resource
discovery and monitoring

DSSoC Chip

•DSSoC design
quantitatively derived
from application Aspen
models

•Early design space
exploration with Aspen

Performance
Functional API

•As feature of DSSoC, PFU
API provides dynamic
performance response of
deployed DSSoC to
intelligent runtime and
programming system.

Dynamic Performance Feedback
including profiling and
configuration response

Precise configuration and benchmark
data for static analysis, mapping,
partitioning, code generation, etc

DSSoC Design

•DSSoC design
quantitatively derived
from application Aspen
models

•Early design space
exploration with Aspen

132

Architectures

134134

136136

Intel Stratix 10 FPGA
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• Intel Stratix 10 FPGA and four banks of DDR4 external
memory

– Board configuration: Nallatech 520 Network Acceleration Card

• Up to 10 TFLOPS of peak single precision performance

• 25MBytes of L1 cache @ up to 94 TBytes/s peak
bandwidth

• 2X Core performance gains over Arria® 10

• Quartus and OpenCL software (Intel SDK v18.1) for
using FPGA

• Provide researcher access to advanced FPGA/SOC
environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/

137

NVIDIA Jetson AGX Xavier SoC
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• NVIDIA Jetson AGX Xavier:

• High-performance system on a chip for autonomous
machines

• Heterogeneous SoC contains:
– Eight-core 64-bit ARMv8.2 CPU cluster (Carmel)
– 1.4 CUDA TFLOPS (FP32) GPU with additional

inference optimizations (Volta)
– 11.4 DL TOPS (INT8) Deep learning accelerator

(NVDLA)
– 1.7 CV TOPS (INT8) 7-slot VLIW dual-processor

Vision accelerator (PVA)
– A set of multimedia accelerators (stereo, LDC,

optical flow)

• Provides researchers access to advanced high-
performance SOC environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/

138

Qualcomm 855 SoC (SM8510P) Snapdragon™
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

Adreno 640

Hexagon 690

Kyro 485

Kyro 485 (8-ARM Prime+BigLittle Cores)

Prime
Core

Hexagon 690 (DSP + AI)

7nm TSMC

Adreno 640
• Vulkan, OpenCL, OpenGL ES 3.1
• Apps: HDR10+, HEVC, Dolby, etc
• Enables 8k-360o VR video playback
• 20% faster compared to Adreno 630

• Quad threaded Scalar Core
• DSP + 4 Hexagon Vector Xccelerators
• New Tensor Xccelerator for AI
• Apps: AI, Voice Assistance, AV codecs

• Snapdragon X24 LTE (855 built-in) modem LTE Category 20
• Snapdragon X50 5G (external) modem (for 5G devices)
• Qualcomm Wi-Fi 6-ready mobile platform: (802.11ax-ready,

802.11ac Wave 2, 802.11ay, 802.11ad)
• Qualcomm 60 GHz Wi-Fi mobile platform: (802.11ay,

802.11ad)
• Bluetooth Version: 5.0
• Bluetooth Speed: 2 Mbps
• High accuracy location with dual-frequency GNSS.

Connectivity (5G)

Spectra 360 ISP
• New dedicated Image Signal Processor (ISP)
• Dual 14-bit CV-ISPs; 48MP @ 30fps single camera
• Hardware CV for object detection, tracking, streo depth process
• 6DoF XR Body tracking, H265, 4K60 HDR video capture, etc.

Spectra 360

5G

Qualcomm Development Board connected to (mcmurdo) HPZ820

• Connected Qualcomm board to HPZ820 through USB
• Development Environment: Android SDK/NDK
• Login to mcmurdo machine

$ ssh –Y mcmurdo
• Setup Android platform tools and development environment

$ source /home/nqx/setup_android.source
• Run Hello-world on ARM cores

$ git clone https://code.ornl.gov/nqx/helloworld-android
$ make compile push run

• Run OpenCL example on GPU
$ git clone https://code.ornl.gov/nqx/opencl-img-processing
• Run Sobel edge detection

$ make compile push run fetch
• Login to Qualcomm development board shell

$ adb shell
$ cd /data/local/tmp

Created by Narasinga Rao Miniskar, Steve Moulton

© Qualcomm Inc.

© Qualcomm Inc.

https://excl.ornl.gov/

For more information or to apply for an account, visit https://excl.ornl.gov/

https://code.ornl.gov/nqx/helloworld-android
https://code.ornl.gov/nqx/opencl-img-processing
https://excl.ornl.gov/
https://excl.ornl.gov/

140140

Applications

141141

End-to-End System: Gnu Radio for Wifi on two NVIDIA Xavier SoCs

• Signal processing: An open-
source implementation of
IEEE-802.11 WIFI a/b/g with
GR OOT modules.

• Input / Output file support via
Socket PDU (UDP server)
blocks

• Image/Video transcoding with
OpenCL/OpenCV

Video/Image
Files

GR IEEE-802.11 Transmit (TX)

UDP

Antenna

UDP
IEEE-802.11 Receive (RX)

Xavier SoC #1 Xavier SoC #2

149149

• GR-Tools
• First tools are released

• Block-level Ontologies [ontologyAnalysis]
• Following properties are extracted from a batch

of block definition files: Descriptions and IDs,
source and sink ports (whether input/output is
scalar, vector or multi-port), allowed data types,
and additional algorithm-specific parameters

• Flowgraph Characterization [workflowAnalysis]
• Characterization of GR workloads at the

flowgraph level.
• Scripts automatically run for for 30 seconds and

reports a breakdown of high-level library module
calls

• Design-space Exploration [designSpaceCL]
• Script to run 13 blocks included in gr-clenabled

- Both on a GPU and on a single CPU core
- By using input sizes varying between 24 and
227 elements.

• Two prototype tools have been added recently
• cgran-scraper
• GRC-analyzer

GR-Tools

https://github.com/cosmic-sdr

13%

6% 3%
4%
1%

10%

0%
8%22%

1%

28%

4%
libgnuradio CPU-time Breakdown

libgnuradio-
analog
libgnuradio-
blocks
libgnuradio-
channels
libgnuradio-
digital
libgnuradio-dtv

https://github.com/cosmic-sdr

152152

• Preliminary SDR Application Profiling:
• Created fully automated GRC profiling toolkit
• Ran each of the 89 flowgraph for 30 seconds
• Profiled with performance counters
• Major overheads:

• Python glue code (libpython), O/S threading & profiling
(kernel.kallsysms, libpthread), libc, ld, Qt

• Runtime overhead:
• Will require significant consideration when run on SoC
• Cannot be executed in parallel
• Hardware assisted scheduling is essential

Applications Profiling

Library Percentage

[kernel.kallsyms] 27.8547
libpython 18.6281
libgnuradio 11.7548
libc 7.7503
ld 3.8839
libvolk 3.7963
libperl 3.7837
[unknown] 3.6465
libQt5 2.9866
libpthread 2.1449

13%

6% 3%

4%
1%

10%

0%8%22%
1%

28%

4%

libgnuradio CPU-time Breakdown

libgnuradio-analog

libgnuradio-blocks

libgnuradio-
channels
libgnuradio-digital

libgnuradio-dtv

libgnuradio-fec

libgnuradio-fft

153153

GRC statistics: Block Proximity Analysis

Block proximity analysis
• Creates a graph:

• Nodes: Unique block types
• Edges: Blocks used in the same GRC file.
• Every co-occurrence increases edge

weight by 1.
• This example was run

• With --mode proximityGraph
• On randomly selected sub-set of GRC

files

155155

Programming Systems

158158

Programming Solution for DSSoC

OpenACC

OpenMP

MPI

OpenARC

LLVM

Compilers

IRIS CASH

Verilog

CUDA

OpenCL

Main input
programming
models

Main input/
main output
programming
models

Optional input
programming
models

Main output/
optional input
programming
models

Used as both
input and
output
programming
model to the
compiler

Used as input
programming
model to the
compiler

HIP

161161

New OpenACC GR Block Mapping Strategy for Heterogeneous
Architectures

ARM CPU

NVIDIA GPU

OpenACC
GR Block

Intel FPGA

CUDA

OpenMP

Intel
OpenCL

General
AcceleratorsOpenCL

CPU/Xeon PhiOpenMP

Mapping
used for
Xavier
porting

SYCL
GR Block

HIP AMD GPUIR
IS

 C
om

m
on

 R
un

tim
e

A
PI

IRIS offers a common API for diverse
heterogeneous devices and also allows
intermixing of multiple programming models
(mix CUDA, OpenMP, OpenCL, etc.).

Support more
programming
models.

162162

OpenACC GR Block Code Structure

Constructor
• OpenACC GR block class inherits GRACCBase class as a base class.
• GRACCBase constructor assigns a unique thread ID per OpenACC

GR block instantiation, which is internally used for thread safety.
• OpenACC backend runtime is also initialized.

Reference CPU Implementation
• Contains the same code as that in the original GR block, which may

have already been vectorized using Volk library.

OpenACC Implementation
• Contains the OpenACC version of the reference CPU implementation.
• Performs the following tasks:

• Copy input data to device memory.
• Execute the OpenACC kernel.
• Copy output data back to host memory.

• OpenARC will translate the OpenACC kernel to multiple different
output programming models (e.g., CUDA, OpenCL, OpenMP, HIP, etc.)

Main Entry Function
• Main entry function executed whenever GR scheduler invokes the

OpenACC GR block.
• The GR block argument, contextType decides which to execute

between the reference CPU version and OpenACC version.
• OpenACC backend runtime may choose CPU as an offloading

target (e.g., offloading OpenMP3 kernel to CPU).

163163

Example Translation of GR accLog Module

Output host code

Output CUDA kernel
code

Input OpenACC code

164164

Port an Example SDR Workflow to Xavier

OpenACC-enabled workflow using gr-openacc blocks

Reference CPU workflow using original gr-blocks

165165

Basic Memory Management for OpenACC-Enabled GR Workflow

OpenAC
C block1

OpenAC
C block2

Source
block Sink Block

Device
kernel1

Device
kernel2

1
2

3 1
2

3

Host

Device

• In the basic memory management scheme, each invocation of an OpenACC GR block performs
the following three tasks:

1) Copy input data to device memory.
2) Run a kernel on device.
3) Copy output data back to host memory.

166166

Optimized Memory Management for OpenACC-Enabled GR Workflow

OpenAC
C block1

OpenAC
C block2

Source
block Sink Block

Device
kernel1

Device
kernel2

1
2 2

3

Host

Device

• In the optimized memory management scheme, some blocks can bypass unnecessary memory
transfers between host and device and directly communicate each other using device memory if
both producer and consumer blocks are running on the same device.

• Notice that device buffer needs extra padding to handle the overwriting feature in the host circular
buffer.

168168

Sample Output of the Example SDR Workflow

169169

SDR Workflow Profiling Using a Built-in GR Performance Monitoring Tool

OpenACC Blocks on Xavier CPU Original GR Blocks on Xavier CPU

A CB B C D1D1 D2 D2A

• CPU versions of OpenACC blocks are algorithmically equivalent to those in the original GR blocks.

Some OpenACC
blocks (B, D) use
a simple register
caching
optimization,
which causes
them to perform
better than the
original GR
blocks.

170170

SDR Workflow Profiling Results When OpenACC Blocks Offloaded to CPU

OpenACC Blocks on Xavier CPU
via OpenMP Original GR Blocks on Xavier CPU

D2BA B CC D1 D1 D2A

• OpenACC blocks are automatically translated to OpenMP3 versions and run on Xavier CPU.

Some of original
GR blocks (A, C)
were already
vectorized with
Volk library.

Some of original
GR blocks (B, C)
performed better
than OpenACC
blocks (B, C).

171171

SDR Workflow Profiling Results When OpenACC Blocks Offloaded to GPU

OpenACC Blocks on Xavier GPU Original GR Blocks on Xavier CPU

B D2C A B D1D1 C D2A

• OpenACC blocks are automatically translated to CUDA versions and run on Xavier GPU.
• Each invocation of an OpenACC block executes three tasks: 1) copy input data to device memory, 2) run a

kernel on device, and 3) copy output data back to host memory

Due to extra
memory transfer
overheads, most
OpenACC blocks
perform worse
than original GR
blocks, except for
the OpenACC
block D1 and D2.

172172

SDR Workflow Profiling Results When Opt. OpenACC Blocks Offloaded to GPU

Opt. OpenACC Blocks on Xavier
GPU

Original GR Blocks on Xavier CPU

D2 BA B C CD1 D1 D2A

• OpenACC blocks are automatically translated to CUDA versions and run on Xavier GPU.
• Optimized OpenACC blocks bypass memory transfers between host and device and directly communicate

each other using device memory if both producer and consumer blocks are running on the same device.

Most of the
OpenACC blocks
perform better
than original GR
blocks, except for
the block A; the
original GR block
A is vectorized
with Volk library,
which performs
better than the
OpenACC block
A.

173173

More Complex SDR Workflow Example

OpenACC-enabled workflow
using gr-openacc blocks

Reference CPU workflow
using original gr-blocks

This example offloads more OpenACC blocks to
Xavier GPU than the previous example.

174174

Profiling Results When Opt. OpenACC Blocks Offloaded to GPU

Opt. OpenACC Blocks on Xavier
GPU

Original GR Blocks on Xavier CPU

A0 A1A1 B1D1D3D2C0B0 A0 C1B0 B1 C0D0C1D0D1D2D3

• OpenACC blocks are automatically translated to CUDA versions and run on Xavier GPU.
• Optimized OpenACC blocks bypass memory transfers between host and device and directly communicate

each other using device memory if both producer and consumer blocks are running on the same device.

This example
shows similar
performance
behaviors as the
previous example.

175175

• Updated the programming system to use our new heterogeneous runtime system, called IRIS, as the
common backend runtime.

• IRIS allows intermixing of multiple different output programming models (e.g., OpenMP3, OpenMP4, OpenACC, CUDA, HIP,
etc.) and runs them on heterogeneous devices concurrently.

• Developed a host-device memory transfer optimization scheme, which allows OpenACC GR blocks to
bypass memory transfers between host and device and directly communicate each other if both
producer and consumer blocks are running on the same device.

• Performed preliminary evaluation of the new programming system by creating synthetic SDR workflow
using the OpenACC GR blocks.

• Next Steps
• Port more complex GR blocks to OpenACC and evaluate more complex SDR workflow.
• Continue to improve and fix bugs in the programming system.

Programming Systems Update Summary and Next Steps

176176

Runtime systems for intelligent scheduling

177

IRIS: An Intelligent Runtime System for Extremely Heterogeneous
Architectures

• Provide programmers a unified programming
environment to write portable code across
heterogeneous architectures (and preferred
programming systems)

• Orchestrate diverse programming systems
(OpenCL, CUDA, HIP, OpenMP for CPU) in a single
application

– OpenCL
• NVIDIA GPU, AMD GPU, ARM GPU, Qualcomm GPU, Intel

CPU, Intel Xeon Phi, Intel FPGA, Xilinx FPGA
– CUDA

• NVIDIA GPU
– HIP

• AMD GPU
– OpenMP for CPU

• Intel CPU, AMD CPU, PowerPC CPU, ARM CPU,
Qualcomm CPU

https://github.com/swiftcurrent2018

https://github.com/swiftcurrent2018

178178

The IRIS Architecture

• Platform Model
– A single-node system equipped with host CPUs

and multiple compute devices (GPUs, FPGAs,
Xeon Phis, and multicore CPUs)

• Memory Model
– Host memory + shared device memory
– All compute devices share the device memory

• Execution Model
– DAG-style task parallel execution across all

available compute devices

• Programming Model
– High-level OpenACC, OpenMP4, SYCL* (*

planned)
– Low-level C/Fortran/Python IRIS host-side

runtime API + OpenCL/CUDA/HIP/OpenMP
kernels (w/o compiler support)

179

Supported Architectures and Programming Systems by IRIS

ExCL* Systems Oswald Summit-node Radeon Xavier Snapdragon

CPU Intel Xeon IBM Power9 Intel Xeon ARMv8 Qualcomm
Kryo

Programming
Systems

• Intel OpenMP
• Intel OpenCL

• IBM XL OpenMP • Intel OpenMP
• Intel OpenCL

• GNU GOMP • Android NDK
OpenMP

GPU NVIDIA P100 NVIDIA V100 AMD Radeon
VII NVIDIA Volta Qualcomm

Adreno 640
Programming

Systems
• NVIDIA CUDA
• NVIDIA

OpenCL

• NVIDIA CUDA • AMD HIP
• AMD OpenCL

• NVIDIA CUDA • Qualcomm
OpenCL

FPGA Intel/Altera
Stratix 10

Programming
Systems

• Intel OpenCL* ORNL Experimental Computing Laboratory (ExCL) https://excl.ornl.gov/

https://excl.ornl.gov/

180

IRIS Booting on Various Platforms

181181

Task Scheduling in IRIS

• A task
– A scheduling unit
– Contains multiple in-order commands

• Kernel launch command
• Memory copy command (device-to-host, host-to-device)

– May have DAG-style dependencies with other tasks
– Enqueued to the application task queue with a device

selection policy
• Available device selection policies

– Specific Device (compute device #)
– Device Type (CPU, GPU, FPGA, XeonPhi)
– Profile-based
– Locality-aware
– Ontology-base
– Performance models (Aspen)
– Any, All, Random, 3rd-party users’ custom policies

• The task scheduler dispatches the tasks in the
application task queue to available compute devices

– Select the optimal target compute device according to
task’s device selection policy

182182

SAXPY Example on Xavier

• Computation
– S[] = A * X[] + Y[]

• Two tasks
– S[] = A * X[] on NVIDIA GPU (CUDA)
– S[] += Y[] on ARM CPU (OpenMP)

• S[] is shared between two tasks
• Read-after-write (RAW), true dependency

• Low-level Python IRIS host code +
CUDA/OpenMP kernels

– saxpy.py
– kernel.cu
– kernel.openmp.h

183

SAXPY: Python host code & CUDA kernel code

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE,
dtype=np.float32)
y = np.arange(SIZE,
dtype=np.float32)
s = np.arange(SIZE,
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

kernel.cu (CUDA)
extern "C" __global__ void saxpy0(float*
S, float A, float* X) {

int id = blockIdx.x * blockDim.x +
threadIdx.x;
S[id] = A * X[id];

}

extern "C" __global__ void saxpy1(float*
S, float* Y) {

int id = blockIdx.x * blockDim.x +
threadIdx.x;
S[id] += Y[id];

}

184

SAXPY: Python host code & OpenMP kernel code

kernel.openmp.h (OpenMP)
#include <iris/iris_openmp.h>

static void saxpy0(float* S, float A, float*
X, IRIS_OPENMP_KERNEL_ARGS) {

int id;
#pragma omp parallel for shared(S, A, X)
private(id)

IRIS_OPENMP_KERNEL_BEGIN
S[id] = A * X[id];
IRIS_OPENMP_KERNEL_END

}

static void saxpy1(float* S, float* Y,
IRIS_OPENMP_KERNEL_ARGS) {

int id;
#pragma omp parallel for shared(S, Y)
private(id)

IRIS_OPENMP_KERNEL_BEGIN
S[id] += Y[id];
IRIS_OPENMP_KERNEL_END

}

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE,
dtype=np.float32)
y = np.arange(SIZE,
dtype=np.float32)
s = np.arange(SIZE,
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

185

Memory Consistency Management

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE,
dtype=np.float32)
y = np.arange(SIZE,
dtype=np.float32)
s = np.arange(SIZE,
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

mem_s is
shared

between GPU
and CPU

186186

Locality-aware Device Selection Policy

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE,
dtype=np.float32)
y = np.arange(SIZE,
dtype=np.float32)
s = np.arange(SIZE,
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_data)

print 'S =', A, '* X + Y', s

iris.finalize()

iris_data
selects the
device that

requires
minimum

data transfer
to execute

the task

187187

IRIS: Task Scheduling Overhead – Running One Million (Empty)
Tasks

ntasks.py
#!/usr/bin/env python

import iris

iris.init()

NTASKS = 1000000

t0 = iris.timer_now()

for i in range(NTASKS):
task = iris.task()
task.submit(iris.iris_random, False)

iris.synchronize()

t1 = iris.timer_now()
print 'Time:', t1 - t0

iris.finalize()

user@xavier:~/work$./ntasks.py
Time: 11.46s

Throughput Latency
87,268 tasks/sec 11.4 μs/task

asynchronous
task submission

concurrent tasks
execution on

multiple devices

CPU or GPU
randomly

188

Closing

Summary
• Architectural specialization
• Performance portability of applications and

software
• DSSoC ORNL project investigating on

performance portability of SDR
– Understand applications and target architectures
– Use open programming models: OpenACC, OpenCL,

OpenMP
– Developing intelligent runtime systems: IRIS

• Goal: scale applications from Qualcomm
Snapdragon to DoE Summit Supercomputer with
minimal programmer effort

• Work continues…

Acknowledgements
• Thanks to staff and students for the work!
• Thanks to DARPA, DOE for funding our work!
• This research was developed, in part, with funding from the Defense

Advanced Research Projects Agency (DARPA). The views, opinions
and/or findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. This document is
approved for public release: distribution unlimited.

Jeffrey Vetter, PI
Seyong Lee,

Programming
Systems

Jungwon Kim,
Runtime Systems

Mehmet Belviranli,
Apps, Modeling,

Ontologies
Richard Glassbrook,

Project Manager
Steve Moulton,

Systems Engineer

Abdel-Kareem
Moadi,

Software/Hardware
Engineer

Seth Hitfield
SDR

Blaise Tine, Intern,
Georgia Tech

Mohammad Monil,
Intern, Oregon

Austin Latham
SYCL

	Striving for SDR Performance Portability �in the Era of Heterogeneous SoCs
	Highlights
	Sixth Wave of Computing
	Predictions for Transition Period
	Complex architectures yield…
	During this Sixth Wave transition, Complexity is our major challenge!
	DARPA Domain-Specific System on a Chip (DSSoC) Program�Getting the best out of specialization when we need programmability
	DSSoC ORNL Project Overview
	Development Lifecycle
	Architectures
	Slide Number 134
	Intel Stratix 10 FPGA�Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group
	NVIDIA Jetson AGX Xavier SoC�Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group
	Qualcomm 855 SoC (SM8510P) Snapdragon™�Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group
	Applications
	End-to-End System: Gnu Radio for Wifi on two NVIDIA Xavier SoCs
	GR-Tools
	Applications Profiling
	GRC statistics: Block Proximity Analysis
	Programming Systems
	Programming Solution for DSSoC
	New OpenACC GR Block Mapping Strategy for Heterogeneous Architectures
	OpenACC GR Block Code Structure
	Example Translation of GR accLog Module
	Port an Example SDR Workflow to Xavier
	Basic Memory Management for OpenACC-Enabled GR Workflow
	Optimized Memory Management for OpenACC-Enabled GR Workflow
	Sample Output of the Example SDR Workflow
	SDR Workflow Profiling Using a Built-in GR Performance Monitoring Tool
	SDR Workflow Profiling Results When OpenACC Blocks Offloaded to CPU
	SDR Workflow Profiling Results When OpenACC Blocks Offloaded to GPU
	SDR Workflow Profiling Results When Opt. OpenACC Blocks Offloaded to GPU
	More Complex SDR Workflow Example
	Profiling Results When Opt. OpenACC Blocks Offloaded to GPU
	Programming Systems Update Summary and Next Steps
	Runtime systems for intelligent scheduling
	IRIS: An Intelligent Runtime System for Extremely Heterogeneous Architectures
	The IRIS Architecture
	Supported Architectures and Programming Systems by IRIS
	IRIS Booting on Various Platforms
	Task Scheduling in IRIS
	SAXPY Example on Xavier
	SAXPY: Python host code & CUDA kernel code
	SAXPY: Python host code & OpenMP kernel code
	Memory Consistency Management
	Locality-aware Device Selection Policy
	IRIS: Task Scheduling Overhead – Running One Million (Empty) Tasks
	Closing
	Bonus Material
	Time for a short poll…

