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Highlights

• Architectural specialization
• Performance portability of applications and software
• DSSoC ORNL project investigating on performance portability of 

SDR
– Understand applications and target architectures
– Use open programming models (e.g., OpenMP, OpenACC, OpenCL)
– Develop intelligent runtime systems

• Goal: scale applications from Qualcomm Snapdragon to DoE 
Summit Supercomputer with minimal programmer effort
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Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition 
Period

6th wave
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Predictions for Transition Period

Optimize Software and 
Expose New 

Hierarchical Parallelism

• Redesign software to 
boost performance 
on upcoming 
architectures

• Exploit new levels of 
parallelism and 
efficient data 
movement

Architectural 
Specialization and 

Integration

• Use CMOS more 
effectively for specific 
workloads

• Integrate components 
to boost performance 
and eliminate 
inefficiencies 

• Workload specific 
memory+storage
system design

Emerging Technologies

• Investigate new 
computational 
paradigms
• Quantum 
• Neuromorphic
• Advanced Digital
• Emerging Memory 

Devices
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Complex architectures yield…

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …
Memory use, 
coalescing Data orchestration Fine grained parallelism Hardware features

Complex 
Programming

Models
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During this Sixth Wave transition, Complexity is our major challenge!

Design: How do we design 
future systems so that they 

are better than current 
systems on mission 

applications?

•Entirely possible that the 
new system will be slower 
than the old system!

•Expect ‘disaster’ 
procurements

Programmability: How do we 
design applications with 

some level of performance 
portability?

•Software lasts much longer 
than transient hardware 
platforms

•Adapt or die



DARPA Domain-Specific System on a Chip (DSSoC) Program
Getting the best out of specialization when we need programmability

DSSoC’s Full-Stack Integration 
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Heterogeneous architecture 
composed of Processor Elements:
• CPUs
• Graphics processing units
• Tensor product units
• Neuromorphic units
• Accelerators (e.g., FFT)
• DSPs
• Programmable logic
• Math accelerators
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Looking at how Hardware/Software co-design is an enabler for efficient use of processing power

Three Optimization Areas
1. Design time
2. Run time
3. Compile time

Addressed via five program areas
1. Intelligent scheduling
2. Domain representations
3. Software
4. Medium access control (MAC)
5. Hardware integration

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

DARPA ERI DSSoC Program: Dr. Tom Rondeau
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DSSoC ORNL Project Overview
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Development Lifecycle

Applications

•Create scalable 
application Aspen models 
manually, with static or 
dynamic analysis, or using 
historical information

Ontologies

•Ontologies based on 
Aspen models using 
statistical and machine 
learning techniques

Programming 
systems

•Programming systems built 
to support ontologies

•Query Aspen models and 
PFU for automatic code 
generation, optimization, 
etc.

Runtime and 
Scheduling

•Intelligent runtime  
scheduling uses models 
and PFU to inform 
dynamic decisions

•Dynamic resource 
discovery and monitoring

DSSoC Chip

•DSSoC design 
quantitatively derived 
from application Aspen 
models

•Early design space 
exploration with Aspen

Performance 
Functional API

•As feature of DSSoC, PFU 
API provides dynamic 
performance response of 
deployed DSSoC to 
intelligent runtime and 
programming system.

Dynamic Performance Feedback 
including profiling and 
configuration response

Precise configuration and benchmark 
data for static analysis, mapping, 
partitioning, code generation, etc

DSSoC Design

•DSSoC design 
quantitatively derived 
from application Aspen 
models

•Early design space 
exploration with Aspen
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Architectures
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Intel Stratix 10 FPGA
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• Intel Stratix 10 FPGA and four banks of DDR4 external 
memory

– Board configuration: Nallatech 520 Network Acceleration Card

• Up to 10 TFLOPS of peak single precision performance

• 25MBytes of L1 cache @ up to 94 TBytes/s peak 
bandwidth

• 2X Core performance gains over Arria® 10

• Quartus and OpenCL software    (Intel SDK v18.1) for 
using FPGA

• Provide researcher access to advanced FPGA/SOC 
environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/
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NVIDIA Jetson AGX Xavier SoC
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• NVIDIA Jetson AGX Xavier:

• High-performance system on a chip for autonomous 
machines 

• Heterogeneous SoC contains: 
– Eight-core 64-bit ARMv8.2 CPU cluster (Carmel)
– 1.4 CUDA TFLOPS (FP32) GPU with additional 

inference optimizations (Volta) 
– 11.4 DL TOPS (INT8) Deep learning accelerator 

(NVDLA)
– 1.7 CV TOPS (INT8) 7-slot VLIW dual-processor 

Vision accelerator (PVA)
– A set of multimedia accelerators (stereo, LDC, 

optical flow)

• Provides researchers access to advanced high-
performance SOC environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/
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Qualcomm 855 SoC (SM8510P) Snapdragon™
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

Adreno 640

Hexagon 690

Kyro 485

Kyro 485 (8-ARM Prime+BigLittle Cores)

Prime 
Core

Hexagon 690 (DSP + AI)

7nm TSMC

Adreno 640
• Vulkan, OpenCL, OpenGL ES 3.1
• Apps: HDR10+, HEVC, Dolby, etc
• Enables 8k-360o VR video playback
• 20% faster compared to Adreno 630

• Quad threaded Scalar Core
• DSP + 4 Hexagon Vector Xccelerators
• New Tensor Xccelerator for AI
• Apps: AI, Voice Assistance, AV codecs

• Snapdragon X24 LTE (855 built-in) modem LTE Category 20
• Snapdragon X50 5G (external) modem (for 5G devices)
• Qualcomm Wi-Fi 6-ready mobile platform: (802.11ax-ready, 

802.11ac Wave 2, 802.11ay, 802.11ad)
• Qualcomm 60 GHz Wi-Fi mobile platform: (802.11ay, 

802.11ad)
• Bluetooth Version: 5.0
• Bluetooth Speed: 2 Mbps
• High accuracy location with dual-frequency GNSS.

Connectivity (5G)

Spectra 360 ISP
• New dedicated Image Signal Processor (ISP)
• Dual 14-bit CV-ISPs; 48MP @ 30fps single camera
• Hardware CV for object detection, tracking, streo depth process
• 6DoF XR Body tracking, H265, 4K60 HDR video capture, etc.

Spectra 360

5G

Qualcomm Development Board connected to (mcmurdo) HPZ820

• Connected Qualcomm board to HPZ820 through USB 
• Development Environment: Android SDK/NDK
• Login to mcmurdo machine

$ ssh –Y mcmurdo
• Setup Android platform tools and development environment

$ source /home/nqx/setup_android.source
• Run Hello-world on ARM cores 

$ git clone https://code.ornl.gov/nqx/helloworld-android
$ make  compile  push  run

• Run OpenCL example on GPU
$ git clone https://code.ornl.gov/nqx/opencl-img-processing
• Run Sobel edge detection

$ make  compile  push  run  fetch
• Login to Qualcomm development board shell

$ adb shell 
$ cd /data/local/tmp

Created by Narasinga Rao Miniskar, Steve Moulton

© Qualcomm Inc.

© Qualcomm Inc.

https://excl.ornl.gov/

For more information or to apply for an account, visit https://excl.ornl.gov/

https://code.ornl.gov/nqx/helloworld-android
https://code.ornl.gov/nqx/opencl-img-processing
https://excl.ornl.gov/
https://excl.ornl.gov/
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Applications
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End-to-End System: Gnu Radio for Wifi on two NVIDIA Xavier SoCs

• Signal processing: An open-
source implementation of 
IEEE-802.11 WIFI a/b/g with 
GR OOT modules.

• Input / Output file support via 
Socket PDU (UDP server) 
blocks

• Image/Video transcoding with 
OpenCL/OpenCV

Video/Image 
Files

GR IEEE-802.11 Transmit (TX)

UDP

Antenna

UDP
IEEE-802.11  Receive (RX)

Xavier SoC #1 Xavier SoC #2
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• GR-Tools
• First tools are released

• Block-level Ontologies [ontologyAnalysis]
• Following properties are extracted from a batch 

of block definition files: Descriptions and IDs, 
source and sink ports (whether input/output is 
scalar, vector or multi-port), allowed data types, 
and additional algorithm-specific parameters

• Flowgraph Characterization [workflowAnalysis]
• Characterization of GR workloads at the 

flowgraph level. 
• Scripts automatically run for for 30 seconds and 

reports a breakdown of high-level library module 
calls 

• Design-space Exploration [designSpaceCL]
• Script to run 13 blocks included in gr-clenabled

- Both on a GPU and on a single CPU core 
- By using input sizes varying between 24 and 
227 elements. 

• Two prototype tools have been added recently
• cgran-scraper
• GRC-analyzer

GR-Tools

https://github.com/cosmic-sdr

13%

6% 3%
4%
1%

10%

0%
8%22%

1%

28%

4%
libgnuradio CPU-time Breakdown

libgnuradio-
analog
libgnuradio-
blocks
libgnuradio-
channels
libgnuradio-
digital
libgnuradio-dtv

https://github.com/cosmic-sdr
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• Preliminary SDR Application Profiling:
• Created fully automated GRC profiling toolkit 
• Ran each of the 89 flowgraph for 30 seconds
• Profiled with performance counters
• Major overheads:

• Python glue code (libpython), O/S threading & profiling 
(kernel.kallsysms, libpthread), libc, ld, Qt

• Runtime overhead:
• Will require significant consideration when run on SoC
• Cannot be executed in parallel
• Hardware assisted scheduling is essential

Applications Profiling

Library Percentage

[kernel.kallsyms] 27.8547
libpython 18.6281
libgnuradio 11.7548
libc 7.7503
ld 3.8839
libvolk 3.7963
libperl 3.7837
[unknown] 3.6465
libQt5 2.9866
libpthread 2.1449

13%

6% 3%

4%
1%

10%

0%8%22%
1%

28%

4%

libgnuradio CPU-time Breakdown

libgnuradio-analog

libgnuradio-blocks

libgnuradio-
channels
libgnuradio-digital

libgnuradio-dtv

libgnuradio-fec

libgnuradio-fft
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GRC statistics: Block Proximity Analysis

Block proximity analysis
• Creates a graph:

• Nodes: Unique block types
• Edges: Blocks used in the same GRC file. 
• Every co-occurrence increases edge 

weight by 1.
• This example was run 

• With --mode proximityGraph
• On randomly selected sub-set of GRC 

files
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Programming Systems
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Programming Solution for DSSoC

OpenACC

OpenMP

MPI

OpenARC

LLVM

Compilers

IRIS CASH

Verilog

CUDA

OpenCL

Main input 
programming 
models

Main input/ 
main output 
programming 
models

Optional input 
programming 
models

Main output/ 
optional input 
programming 
models

Used as both 
input and 
output 
programming 
model to the 
compiler

Used as input 
programming 
model to the 
compiler

HIP
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New OpenACC GR Block Mapping Strategy for Heterogeneous 
Architectures

ARM CPU

NVIDIA GPU

OpenACC
GR Block

Intel FPGA

CUDA

OpenMP

Intel 
OpenCL

General 
AcceleratorsOpenCL

CPU/Xeon PhiOpenMP

Mapping 
used for 
Xavier 
porting

SYCL
GR Block

HIP AMD GPUIR
IS

 C
om

m
on

 R
un

tim
e 

A
PI

IRIS offers a common API for diverse 
heterogeneous devices and also allows 
intermixing of multiple programming models 
(mix CUDA, OpenMP, OpenCL, etc.).

Support more 
programming 
models.
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OpenACC GR Block Code Structure

Constructor
• OpenACC GR block class inherits GRACCBase class as a base class.
• GRACCBase constructor assigns a unique thread ID per OpenACC 

GR block instantiation, which is internally used for thread safety.
• OpenACC backend runtime is also initialized.

Reference CPU Implementation
• Contains the same code as that in the original GR block, which may 

have already been vectorized using Volk library.

OpenACC Implementation
• Contains the OpenACC version of the reference CPU implementation.
• Performs the following tasks:

• Copy input data to device memory.
• Execute the OpenACC kernel.
• Copy output data back to host memory.

• OpenARC will translate the OpenACC kernel to multiple different 
output programming models (e.g., CUDA, OpenCL, OpenMP, HIP, etc.)

Main Entry Function
• Main entry function executed whenever GR scheduler invokes the 

OpenACC GR block.
• The GR block argument, contextType decides which to execute 

between the reference CPU version and OpenACC version.
• OpenACC backend runtime may choose CPU as an offloading 

target (e.g., offloading OpenMP3 kernel to CPU).
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Example Translation of GR accLog Module

Output host code

Output CUDA kernel 
code

Input OpenACC code
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Port an Example SDR Workflow to Xavier

OpenACC-enabled workflow using gr-openacc blocks

Reference CPU workflow using original gr-blocks
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Basic Memory Management for OpenACC-Enabled GR Workflow

OpenAC
C block1

OpenAC
C block2

Source 
block Sink Block

Device 
kernel1

Device 
kernel2

1
2

3 1
2

3

Host

Device

• In the basic memory management scheme, each invocation of an OpenACC GR block performs 
the following three tasks: 

1) Copy input data to device memory.
2) Run a kernel on device.
3) Copy output data back to host memory.
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Optimized Memory Management for OpenACC-Enabled GR Workflow

OpenAC
C block1

OpenAC
C block2

Source 
block Sink Block

Device 
kernel1

Device 
kernel2

1
2 2

3

Host

Device

• In the optimized memory management scheme, some blocks can bypass unnecessary memory 
transfers between host and device and directly communicate each other using device memory if 
both producer and consumer blocks are running on the same device.

• Notice that device buffer needs extra padding to handle the overwriting feature in the host circular 
buffer.
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Sample Output of the Example SDR Workflow
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SDR Workflow Profiling Using a Built-in GR Performance Monitoring Tool

OpenACC Blocks on Xavier CPU Original GR Blocks on Xavier CPU

A CB B C D1D1 D2 D2A

• CPU versions of OpenACC blocks are algorithmically equivalent to those in the original GR blocks.

Some OpenACC 
blocks (B, D) use 
a simple register 
caching 
optimization, 
which causes 
them to perform 
better than the 
original GR 
blocks.
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SDR Workflow Profiling Results When OpenACC Blocks Offloaded to CPU

OpenACC Blocks on Xavier CPU 
via OpenMP Original GR Blocks on Xavier CPU

D2BA B CC D1 D1 D2A

• OpenACC blocks are automatically translated to OpenMP3 versions and run on Xavier CPU.

Some of original 
GR blocks (A, C) 
were already 
vectorized with 
Volk library.

Some of original 
GR blocks (B, C) 
performed better 
than OpenACC 
blocks (B, C).
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SDR Workflow Profiling Results When OpenACC Blocks Offloaded to GPU

OpenACC Blocks on Xavier GPU Original GR Blocks on Xavier CPU

B D2C A B D1D1 C D2A

• OpenACC blocks are automatically translated to CUDA versions and run on Xavier GPU.
• Each invocation of an OpenACC block executes three tasks: 1) copy input data to device memory, 2) run a 

kernel on device, and 3) copy output data back to host memory

Due to extra 
memory transfer 
overheads, most 
OpenACC blocks 
perform worse 
than original GR 
blocks, except for 
the OpenACC 
block D1 and D2. 
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SDR Workflow Profiling Results When Opt. OpenACC Blocks Offloaded to GPU

Opt. OpenACC Blocks on Xavier 
GPU

Original GR Blocks on Xavier CPU

D2 BA B C CD1 D1 D2A

• OpenACC blocks are automatically translated to CUDA versions and run on Xavier GPU.
• Optimized OpenACC blocks bypass memory transfers between host and device and directly communicate 

each other using device memory if both producer and consumer blocks are running on the same device.

Most of the 
OpenACC blocks 
perform better 
than original GR 
blocks, except for 
the block A; the 
original GR block 
A is vectorized 
with Volk library, 
which performs 
better than the 
OpenACC block 
A. 
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More Complex SDR Workflow Example

OpenACC-enabled workflow 
using gr-openacc blocks

Reference CPU workflow 
using original gr-blocks

This example offloads more OpenACC blocks to 
Xavier GPU than the previous example.
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Profiling Results When Opt. OpenACC Blocks Offloaded to GPU

Opt. OpenACC Blocks on Xavier 
GPU

Original GR Blocks on Xavier CPU

A0 A1A1 B1D1D3D2C0B0 A0 C1B0 B1 C0D0C1D0D1D2D3

• OpenACC blocks are automatically translated to CUDA versions and run on Xavier GPU.
• Optimized OpenACC blocks bypass memory transfers between host and device and directly communicate 

each other using device memory if both producer and consumer blocks are running on the same device.

This example 
shows similar 
performance 
behaviors as the 
previous example.
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• Updated the programming system to use our new heterogeneous runtime system, called IRIS, as the 
common backend runtime.

• IRIS allows intermixing of multiple different output programming models (e.g., OpenMP3, OpenMP4, OpenACC, CUDA, HIP, 
etc.) and runs them on heterogeneous devices concurrently.

• Developed a host-device memory transfer optimization scheme, which allows OpenACC GR blocks to 
bypass memory transfers between host and device and directly communicate each other if both 
producer and consumer blocks are running on the same device. 

• Performed preliminary evaluation of the new programming system by creating synthetic SDR workflow 
using the OpenACC GR blocks.

• Next Steps
• Port more complex GR blocks to OpenACC and evaluate more complex SDR workflow.
• Continue to improve and fix bugs in the programming system.

Programming Systems Update Summary and Next Steps
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Runtime systems for intelligent scheduling
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IRIS: An Intelligent Runtime System for Extremely Heterogeneous 
Architectures

• Provide programmers a unified programming 
environment to write portable code across 
heterogeneous architectures (and preferred 
programming systems)

• Orchestrate diverse programming systems 
(OpenCL, CUDA, HIP, OpenMP for CPU) in a single 
application

– OpenCL
• NVIDIA GPU, AMD GPU, ARM GPU, Qualcomm GPU, Intel 

CPU, Intel Xeon Phi, Intel FPGA, Xilinx FPGA
– CUDA

• NVIDIA GPU
– HIP

• AMD GPU
– OpenMP for CPU

• Intel CPU, AMD CPU, PowerPC CPU, ARM CPU, 
Qualcomm CPU

https://github.com/swiftcurrent2018

https://github.com/swiftcurrent2018
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The IRIS Architecture

• Platform Model
– A single-node system equipped with host CPUs 

and multiple compute devices (GPUs, FPGAs, 
Xeon Phis, and multicore CPUs)

• Memory Model
– Host memory + shared device memory
– All compute devices share the device memory

• Execution Model
– DAG-style task parallel execution across all 

available compute devices

• Programming Model
– High-level OpenACC, OpenMP4, SYCL* (* 

planned)
– Low-level C/Fortran/Python IRIS host-side 

runtime API + OpenCL/CUDA/HIP/OpenMP 
kernels (w/o compiler support)
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Supported Architectures and Programming Systems by IRIS

ExCL* Systems Oswald Summit-node Radeon Xavier Snapdragon

CPU Intel Xeon IBM Power9 Intel Xeon ARMv8 Qualcomm
Kryo

Programming 
Systems

• Intel OpenMP
• Intel OpenCL

• IBM XL OpenMP • Intel OpenMP
• Intel OpenCL

• GNU GOMP • Android NDK 
OpenMP

GPU NVIDIA P100 NVIDIA V100 AMD Radeon 
VII NVIDIA Volta Qualcomm 

Adreno 640
Programming 

Systems
• NVIDIA CUDA
• NVIDIA 

OpenCL

• NVIDIA CUDA • AMD HIP
• AMD OpenCL

• NVIDIA CUDA • Qualcomm 
OpenCL

FPGA Intel/Altera 
Stratix 10

Programming 
Systems

• Intel OpenCL* ORNL Experimental Computing Laboratory (ExCL) https://excl.ornl.gov/

https://excl.ornl.gov/
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IRIS Booting on Various Platforms
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Task Scheduling in IRIS

• A task
– A scheduling unit
– Contains multiple in-order commands

• Kernel launch command
• Memory copy command (device-to-host, host-to-device)

– May have DAG-style dependencies with other tasks
– Enqueued to the application task queue with a device 

selection policy
• Available device selection policies

– Specific Device (compute device #)
– Device Type (CPU, GPU, FPGA, XeonPhi)
– Profile-based
– Locality-aware
– Ontology-base
– Performance models (Aspen)
– Any, All, Random, 3rd-party users’ custom policies

• The task scheduler dispatches the tasks in the 
application task queue to available compute devices

– Select the optimal target compute device according to 
task’s device selection policy
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SAXPY Example on Xavier

• Computation
– S[] = A * X[] + Y[]

• Two tasks
– S[] = A * X[] on NVIDIA GPU (CUDA)
– S[] += Y[] on ARM CPU (OpenMP)

• S[] is shared between two tasks
• Read-after-write (RAW), true dependency

• Low-level Python IRIS host code +
CUDA/OpenMP kernels

– saxpy.py
– kernel.cu
– kernel.openmp.h
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SAXPY: Python host code & CUDA kernel code

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, 
dtype=np.float32)
y = np.arange(SIZE, 
dtype=np.float32)
s = np.arange(SIZE, 
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

kernel.cu (CUDA)
extern "C" __global__ void saxpy0(float* 
S, float A, float* X) {

int id = blockIdx.x * blockDim.x + 
threadIdx.x;
S[id] = A * X[id];

}

extern "C" __global__ void saxpy1(float* 
S, float* Y) {

int id = blockIdx.x * blockDim.x + 
threadIdx.x;
S[id] += Y[id];

}
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SAXPY: Python host code & OpenMP kernel code

kernel.openmp.h (OpenMP)
#include <iris/iris_openmp.h>

static void saxpy0(float* S, float A, float* 
X, IRIS_OPENMP_KERNEL_ARGS) {

int id;
#pragma omp parallel for shared(S, A, X) 
private(id)

IRIS_OPENMP_KERNEL_BEGIN
S[id] = A * X[id];
IRIS_OPENMP_KERNEL_END

}

static void saxpy1(float* S, float* Y, 
IRIS_OPENMP_KERNEL_ARGS) {

int id;
#pragma omp parallel for shared(S, Y) 
private(id)

IRIS_OPENMP_KERNEL_BEGIN
S[id] += Y[id];
IRIS_OPENMP_KERNEL_END

}

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, 
dtype=np.float32)
y = np.arange(SIZE, 
dtype=np.float32)
s = np.arange(SIZE, 
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()
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Memory Consistency Management

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, 
dtype=np.float32)
y = np.arange(SIZE, 
dtype=np.float32)
s = np.arange(SIZE, 
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

mem_s is 
shared 

between GPU 
and CPU
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Locality-aware Device Selection Policy

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, 
dtype=np.float32)
y = np.arange(SIZE, 
dtype=np.float32)
s = np.arange(SIZE, 
dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_data)

print 'S =', A, '* X + Y', s

iris.finalize()

iris_data
selects the 
device that 

requires 
minimum 

data transfer 
to execute 

the task
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IRIS: Task Scheduling Overhead – Running One Million (Empty) 
Tasks

ntasks.py
#!/usr/bin/env python

import iris

iris.init()

NTASKS = 1000000

t0 = iris.timer_now()

for i in range(NTASKS):
task = iris.task()
task.submit(iris.iris_random, False)

iris.synchronize()

t1 = iris.timer_now()
print 'Time:', t1 - t0

iris.finalize()

user@xavier:~/work$ ./ntasks.py
Time: 11.46s

Throughput Latency
87,268 tasks/sec 11.4 μs/task

asynchronous 
task submission

concurrent tasks 
execution on 

multiple devices

CPU or GPU
randomly
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Closing

Summary
• Architectural specialization
• Performance portability of applications and 

software
• DSSoC ORNL project investigating on 

performance portability of SDR
– Understand applications and target architectures
– Use open programming models: OpenACC, OpenCL, 

OpenMP
– Developing intelligent runtime systems: IRIS

• Goal: scale applications from Qualcomm 
Snapdragon to DoE Summit Supercomputer with 
minimal programmer effort

• Work continues…
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