
Forth, The New Synthesis:
  

Growing Forth with  
preForth and seedForth 

Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M   XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it  tries to
pass it off on NUMB E R N U M B E R  shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f  Forth save the entire name o f  each definition in  the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f  characters in  the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if  the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if  the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it  gets
interpreted and then executed.

Now. remember we said that E  is a word? When you type the word
as in

: S T A R  4 2  E M I T  ;

THE DICTIONARY 1 5

uho@ .de

https://github.com/uho/preForth



Overview

• Introduction: Forth, the New Synthesis
• family of minimalistic stack based languages

• the ICE concept

• seedForth 
accepting tokenized source code

• summary and future work
• Q&A



Forth, the new synthesis
The new synthesis is an ongoing effort

• to understand 
• the general foundation of computation 
• especially the basic principles of Forth 

• to form the basis of a new modern Forth



Forth, the new synthesis
Our guidelines are

• Forth everywhere (as much as possible)
• bootstrap-capable self-generating system
• completely transparent
• simple to understand
• quest for simplicity
• biological analogy
• disaggregation and recombination

We build a family of minimalistic stack based 
languages in order to study their essence.



family of minimalistic stack based languages
preForth seedForth

purpose bootstrap seedForth application plattform
accepted source code text based token based
stacks parameter/return parameter/return

LOC <500 <550
# of primitives 13 31

recursive functions ✔ ✔

random access memory none ✔

string handling on stacks in memory
function definitions platform and Forth Forth

control structures (tail) recursion, 
conditional exit

(tail) recursion,

conditionals, loops

easily retargetable ✔ ✔

input/output character/int i/o 
stdin/stdout

character i/o 
stdin/stdout

data types character/int character/int/address
interpreter none ✔

compiler ✔ ✔



ICE concept
intermix
• Interpret
• Compile
• Execute

• Language property of Forth, Lisp, Python
• define a function, it gets compiled
• invoke a function, its arguments get interpreted
• and the function will be executed

• the function's side effect or its result can be used  
in the remaining program

• executing functions during compilation can 
generate code

Moore 1999



ICE concept

: erase ( c-addr u -- )
   bounds ?DO 0 I c! LOOP ; 

1024 Constant bufsize
Create buf  bufsize allot

buf bufsize erase 

\ compile

\ interpret

\ execute



seedForth
seedForth 
• accepts source code in tokenized form
• the seedForth bed is just 550 LOC
• is extensible by function (aka colon) definitions
• follows the ICE principle and so provides

• a compiler that compiles definitions
• an interpreter that can execute definitions

• is extended by application code to create apps
• can be extended to a full-featured interactive Forth

• current implementations for i386 and AMD64



seedForth bed 

• very easy to adapt to 
new hardware  
(e.g. IoT devices)

• bring up time:  
            half a day

• all above seed bed 
can be left untouched

• minimal memory 
footprint (i386: 2KB)

• easy to understand 
completely 
from top to bottom

seedForth bed

application
source code

application
tokenized source code

seedForth tokenizer

grow

application
object code

text based source code

tokenized source code

!
operating system

hardware

 

"

seedForth

object code



seedForth architecture

seedForth virtual machine
• data (parameter) stack, return stack
• addressable memory for code, function definitions, data
• headers: array mapping word indices to start addresses

simplify names:  
names are just numbers

Memory for code-, colon-definitions, data

Headers

Data Stack Return Stack

h!h@

c! !

c@ @

hp

dp



seedForth bed words
(  0 $00 ) Token bye       Token prefix1       Token prefix2    Token emit           
(  4 $04 ) Token key       Token dup           Token swap       Token drop           
(  8 $08 ) Token 0<        Token ?exit         Token >r         Token r> 
( 12 $0C ) Token -         Token exit          Token lit        Token @              
( 16 $10 ) Token c@        Token !             Token c!         Token execute        
( 20 $14 ) Token branch    Token ?branch       Token negate     Token +              
( 24 $18 ) Token 0=        Token ?dup          Token cells      Token +!             
( 28 $1C ) Token h@        Token h,            Token here       Token allot          
( 32 $20 ) Token ,         Token c,            Token fun        Token interpreter    
( 36 $24 ) Token compiler  Token create        Token does>      Token cold           
( 40 $28 ) Token depth     Token compile,      Token new        Token couple         
( 44 $2C ) Token and       Token or            Token sp@        Token sp!            
( 48 $30 ) Token rp@       Token rp!           Token $lit       Token num 
( 52 $34 ) Token um*       Token um/mod        Token unused     Token key?           
( 56 $38 ) Token token     Token usleep        Token hp

: compiler ( -- ) 
   token ?dup 0= ?exit ?lit  
   compile,   tail compiler ;

: interpreter ( -- ) 
   token execute   tail interpreter ;



hello.seed

seedForth tokenizer
• function names map to single tokens (function numbers)
• number and character literals map to token sequences
• control structures map to token sequences
• : starts a new function definition and invokes compiler 
• ; stops compiler and ends function definition

PROGRAM hello.seed
'H' emit  'e' emit  'l' dup emit emit  'o' emit  10 emit

 : 1+ ( x1 -- x2 ) 1 + ;

'A' 1+  emit   \ outputs B
END

00000000  33 04 48 0d 03 33 04 65  0d 03 33 04 6c 0d 05 03  |3.H..3.e..3.l...|
00000010  03 33 04 6f 0d 03 33 04  0a 0d 03 22 33 04 01 0d  |.3.o..3...."3...|
00000020  17 0d 00 33 04 41 0d 3b  03 00                    |...3.A.;..|

hello.seedsource



hello.seed

seedForth tokenizer
• function names map to single tokens (function numbers)
• number and character literals map to token sequences
• control structures map to token sequences
• : starts a new function definition and invokes compiler 
• ; stops compiler and ends function definition

PROGRAM hello.seed
'H' emit  'e' emit  'l' dup emit emit  'o' emit  10 emit

 : 1+ ( x1 -- x2 ) 1 + ;

'A' 1+  emit   \ outputs B
END

00000000  33 04 48 0d 03 33 04 65  0d 03 33 04 6c 0d 05 03  |3.H..3.e..3.l...|
00000010  03 33 04 6f 0d 03 33 04  0a 0d 03 22 33 04 01 0d  |.3.o..3...."3...|
00000020  17 0d 00 33 04 41 0d 3b  03 00                    |...3.A.;..|

hello.seedsource

Hello
B



seedForth tokenizer
• control structures map to token sequences
• BEGIN ... condition UNTIL      simple loop
• here puts the memory address where code is generated 

on parameter stack
• , lays down the value on the parameter stack at here

PROGRAM countdown.seed
: .digit ( u -- ) '0' + emit ;
: countdown ( u -- ) BEGIN 1 - dup .digit dup 0= UNTIL  drop ;
10 countdown
END

00000000  22 33 04 30 0d 17 03 0d  00 22 00 1e 24 33 04 01  |"3.0....."..$3..|
00000010  0d 0c 05 3b 05 18 15 00  20 24 07 0d 00 33 04 0a  |...;.... $...3..|
00000020  0d 3c 00                                          |.<.|

BEGIN ( -- addr ) maps to the token sequence  bye  here  compiler
                                              $00  $1E   $24

UNTIL ( addr -- ) maps to the token sequence  ?branch  bye ,   compiler
                                              $15      $00 $20 $24



seedForth tokenizer
• control structures map to token sequences
• BEGIN ... condition UNTIL      simple loop
• here puts the memory address where code is generated 

on parameter stack
• , lays down the value on the parameter stack at here

PROGRAM countdown.seed
: .digit ( u -- ) '0' + emit ;
: countdown ( u -- ) BEGIN 1 - dup .digit dup 0= UNTIL  drop ;
10 countdown
END

00000000  22 33 04 30 0d 17 03 0d  00 22 00 1e 24 33 04 01  |"3.0....."..$3..|
00000010  0d 0c 05 3b 05 18 15 00  20 24 07 0d 00 33 04 0a  |...;.... $...3..|
00000020  0d 3c 00                                          |.<.|

BEGIN ( -- addr ) maps to the token sequence  bye  here  compiler
                                              $00  $1E   $24

UNTIL ( addr -- ) maps to the token sequence  ?branch  bye ,   compiler
                                              $15      $00 $20 $24

9876543210



seedForth grows
extensions for application development
✓ dynamic memory allocation with allocate, resize and free
✓ defining words including DOES> (Definer)
✓ compiling words (control structures,  Macro) 
✓ exception handling (catch, throw) 
✓ cooperative multitasking (pause, activate)
✓ quotations ([: and ;])
• the tokenizer expressed in seedForth
• ...

extensions towards a full-featured interactive Forth
✓ headers with dictionary search
✓ text interpreter and compiler that work on text source
✓ optimizers: inline, peephole, constant folding
• a Forth assembler for the target platform and additional primitives
• OOP
• file and operating system interface
• access to hardware
• ... seedForth/interactive



summary and future work
The New Synthesis
The ICE concept: Interpret, Compile, Execute
seedForth
- accepts tokenized source code
- names are just number indices into the header array
- grow the seedForth bed to build applications
- extensible to a complete, interactive Forth
- easy to understand from top to bottom

future work
- extend seedForth/interactive to support ANS-Forth
- IoT targets
- "New Synthesis" the book Q&A


