
Falconieri: Remote
Provisioning Service as a

Service
A new, modern, open source and cloud native

remote provisioning service gateway.

 Matteo Valentini
@_Amygos

Intro: Remote Provisioning Service
Theory

_Amygos

Intro: What is it a Remote Provisioning Service?

The scope of Remote Provisioning Service is to solve the problem of the first time
phone configuration.

Without a RPS the phone must rely on local mechanism for initial provisioning,
like:

● DHCP Option 66
● UPnP

_Amygos

Intro: What is it a Remote Provisioning Service?

_Amygos

Intro: What can do a Remote Provisioning Service?

● Assign a configuration to a device even before is out of the box
● Massive configuration of multiple device via APIs

Why building a RPS gateway?

_Amygos

Why: Vendors implementations

_Amygos

Why: Vendors implementations

● Not standard set of features between vendors
● Different APIs each vendors
● XML-RPC

_Amygos

Why: The Leopard project

The scope of the project is refactoring the phone provisioning component of
NethVoice, the Nethesis PBX solution.

With these goals:

● Use most modern technologies
● Introduction of new provisioning mechanisms (like RPS)
● Support of a well defined set of selected phone vendors

○ SNOM
○ Gigaset
○ Yealink
○ Fanvil

● Release most of the project’s components as Open Source projects

Falconieri is one of the first components released as Open Source

_Amygos

Why: The role of Falconieri

The role of Falconieri is to:

● Provide a unified HTTP rest interface to the vendors RPS service
● Store the credentials for access to the vendors RPS services

The vendors
APIs

The Good, the Bad and the Ugly

(Fanvil, Gigaset, SNOM,
Yealink)

_Amygos

The vendors APIs: the semantic

For every vendor we want create an API that:

● Given a specific mac address, create a new configuration for that mac
address if the mac address is not already configured

● Given a specific mac address, override the previous configuration for that
mac address if the mac address was already configured

_Amygos

The vendors APIs: the Good

● SNOM
○ Good documentation

■ https://service.snom.com/display/wiki/XML-RPC+API
○ Simple APIs

■ 7 APIs
○ HTTPS endpoint

https://service.snom.com/display/wiki/XML-RPC+API

_Amygos

The vendors APIs: the Good (SNOM)

Api calls for implementing Falconieri semantic:

1. redirect.registerPhone(mac, provisioningUrl)

_Amygos

The vendors APIs: the Bad (Gigaset)

● Gigaset
○ Public documentation

■ https://teamwork.gigaset.com/gigawiki/display/GPPPO/Gigaset+Redirect+server
■ Better documentation in the service portal (after obtained a user/password from Gigaset)

○ Simple APIs
■ 7 APIs

○ HTTPS endpoint

Why the Bad?

● Require a CRC code within the mac
● The CRC code in printed in the phone label (whit no public formula for

calcualtion)
● The mandatory CRC code make almost impossible an automated device

discovery and configuration.

But maybe you can have the CRC code disable for your account if you ask.

https://teamwork.gigaset.com/gigawiki/display/GPPPO/Gigaset+Redirect+server

_Amygos

The vendors APIs: the Bad (Gigaset)

Api calls for implementing Falconieri semantic:

1. autoprov.deregisterDevice(macID)
○ macID: ”<MAC address> - <CRC code>”
○ We don’t care about success or not!

2. autoprov.registerDevice(macID, provisioningUrl, Provider)
○ Provider: in this case can be anything

_Amygos

The vendors APIs: the Ugly

● Yealink
● Fanvil

_Amygos

The vendors APIs: the Ugly (Yealink)

Yelink

● Pubblic documentation
○ http://support.yealink.com/documentFront/forwardToDocumentDetailPage?documentId=257

● Too many APIs
○ 16 APIs

● HTTPS endpoint

Why in the ugly?

● The APIs are overloaded and redundant.
● Very bad API design

http://support.yealink.com/documentFront/forwardToDocumentDetailPage?documentId=257

_Amygos

The vendors APIs: the Ugly (Yealink)

Api calls for implementing Falconieri semantic:

1. redirect.registerDeviceWithUniqueUrl(mac, serverName,

provisioningUrl, isOverride)
○ serverName: in this case can be anything, provisioningUrl take the precedence
○ isOverride: if 1 override the previous configuration

_Amygos

The vendors APIs: the Ugly (Fanvil)

Fanvil:

● No public documentation!
● Too many APIs!

○ 19 APIs!

● HTTP endpoint…

Why the Ugly

● No HTTPS, require a double hash of the password for the authentication
(md5(md5(password)))!

● Too many steps to implement the simple Falconieri semantic.

_Amygos

The vendors APIs: the Ugly (Fanvil)

1. redirect.addServer(serverName, provisioningUrl)
○ The serverName and provisioningUr actually are the same
○ Don’t care if the Server already exist

2. redirect.deRegisterDevice(mac)
○ Don’t care about the success.

3. redirect.registerDevice(mac, serverName)

Falconieri

_Amygos

Falconieri APIs

PUT /providers/:provider/:mac
Path variables

● provider: Name of the remote provider.
● mac: Mac address of the device, represented in the EUI-48 IEEE RA

Query parameters

● crc: mac address CRC code, only valid with Gigaset provider.

Body

A JSON object with the url field:

● url: URL of configuration server.

_Amygos

Falconieri Usage

Usage of ./falconieri:

 -c string

 Path to configuration file (default "/opt/falconieri/conf.json")

_Amygos

Falconieri configurations

Falconi can be configured in two way:

● JSON file
● Environment Variables

The configuration passed via environment variables take the precedence.

_Amygos

Falconieri JSON configuration

{

 "providers": {

 "snom": {

 "user":"user",

 "password": "password",

 "rpc_url":

"https://secure-provisioning.snom.com:8083/xmlrpc/",

 "disable": false

 }

}

_Amygos

Falconieri characteristics

● Opensource (AGPL v3)
● Single Go Lang binary
● Easily deployment with provided ansible role.
● Created with “12 factor app” in mind
● Stateless
● Easily vertically and horizontally scalable

_Amygos

Falconieri TODOs

● Client authentication
● Configuration of a list of devices
● More deployment strategy: RPM, DEB, Docker, ELM ecc..
● Deletion APIs?

Every Pull Request, enhancement, critique are very welcome!

https://github.com/nethesis/falconieri

https://github.com/nethesis/falconieri

Thanks for listening!
Questions?

Matteo Valentini

Developer @ Nethesis (mostly Infrastrutture Developer)

 Amygos

 @_Amygos

 amygos@paranoici.org, matteo.valentini@nethesis.it

