
Facilitating deterministic 
distributed computation 

with WASI



Who am I?



My name is Jakub Konka

“Who Are You”

R&D Researcher at Golem Factory 

Regular contributor to Wasmtime 
and WASI, and one of the authors 
of wasi-common library

Member of WebAssembly CG

@kubkon

kubkon@golem.network

kubkon@jakubkonka.com

@kubkon



What is WASI?



WASI - WebAssembly 
System Interface

Standardisation led by 
Bytecode Alliance

What is WASI?

01

02

Capability-based security - 
safe and portable access to 
host’s resources 

03 Source: https://wasi.dev

https://wasi.dev


clocks



Allowed Forbidden

File::create(“/workspace/new”)?;

.

.

.

rand::thread_rng();
.
.
.

File::open(“/dev/null”)?;

.

.

.

let now = SystemTime::now();
.
.
.



What is the setting?



Meet the Golem Network



Meet the Golem Network



Wasm sandbox in Golem



Verification by redundancy



Is WASI
deterministic?



● Provided by `random_get` 
● Will get its own module
● Will require a capability

Sources of nondeterminism in WASI

01 unsafe fn random_get(
buf: *mut u8,
buf_len: Size,

) -> Result<(), Errno> {
// call `getrandom` to access
// host’s entropy source, and
// populate input `buf`

}



● Provided by `clock_time_get` 
● Will get its own module
● Will require a capability

Sources of nondeterminism in WASI

02 unsafe fn clock_time_get(
id: Clockid,
precision: Timestamp

) -> Result<Timestamp, Errno> {
// call `clock_gettime` to
// get current host’s time
// etc.

}



● Part of `Filestat` struct
● Inherently set by the host 

when file is created/modified
● Can be read by a module via 

`fd_filestat_get` or 
`path_filestat_get`

Sources of nondeterminism in WASI

03

struct Filestat {
dev: Device,
ino: Inode,
filetype: Filetype,
nlink: Linkcount,
size: Filesize,
atim: Timestamp,
mtim: Timestamp,
ctim: Timestamp,

}

unsafe fn fd_filestat_get(
fd: Fd

) -> Result<Filestat, Errno> {
// call `fstat` to
// get info on the underlying
// host’s fd

}



● Provided by `fd_readdir` 
● Order of entries dependent 

on the host and the 
filesystem used

Sources of nondeterminism in WASI

04
unsafe fn fd_readdir(

fd: Fd,
buf: *mut u8,
buf_len: Size,
cookie: Dircookie,

) -> Result<Size, Errno> {
// call `readdir` iteratively
// to get enough dir entries
// starting from `cookie` to
// fully populate `buf`

}



Encourage you to join the 
ongoing discussion here:

WebAssembly/WASI/issues/190

Sources of nondeterminism in WASI

05

https://github.com/WebAssembly/WASI/issues/190


Can WASI be made
deterministic though?



The model



What is WASI file descriptor?

struct Entry {
// ...
os_handle: OsHandle,
rights_base: Rights,
rights_inheriting: Rights,

}

WASI Fd 0 ... 11 ...

Entry Stdin ... ...



Rights::fd_read

WASI Fd rights?

fd_read(fd, iovs)?;

fd_fdstat_get(fd)?;

Rights::fd_write

fd_write(fd, ciovs)?;

fd_fdstat_get(fd)?;

can invoke

But nothing else!



Have we just
achieved determinism?



Almost! But not quite there yet...

random_get(...)?;

You can still invoke these, since 
they are `Fd` independent

clock_time_get(...)?;

environ_get(...)?;

poll_oneoff(...)?;

Good news is, they will all get their own 
module and require a capability



Time for examples!



Examples + description on Github:
kubkon/wasi-compute

3 examples to play with:
1. hello-compute – read from `in`, uppercase, write to `out`
2. test-compute – verify that `in` and `out` have only `fd_read` and 

`fd_write` respectively
3. flite-compute – plug in a text-to-speech `flite` engine into model

Everything’s on Github!

01

02

Fork, play with, break, extend…
In general, have fun!

03

https://github.com/kubkon/wasi-compute
https://github.com/kubkon/wasi-compute/tree/master/hello-compute
https://github.com/kubkon/wasi-compute/tree/master/test-compute
https://github.com/kubkon/wasi-compute/tree/master/flite-compute


Any questions?

Have more questions about Wasm, WASI and Golem?
Contact me direct on

@kubkon

kubkon@golem.network

kubkon@jakubkonka.com

@kubkon


