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Selecting a Finite Element Analysis Backend
for Exascale Fusion Reactor Simulations
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A Brief Introduction to Fusion
Producing Energy with Magnetically Confined Plasma
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The Physics Behind Fusion

n + 14,1 МеВn + 14.1 MeV

He + 3,5 МеВHe + 3.5 MeV44
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Magnetic Confinement - The Tokamak

Image Copyright © S. Li, H. Jiang, Z. Ren, C. Xu, 2014 CC-BY-4.0​
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ITER

  

Image Copyright © Oak Ridge National Laboratory, 2016 CC-BY-2.0​



| 6/29

Engineering Analysis Challenges
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Two Approaches

Single tightly coupled simulation

● One single program

● Solve a large linear system for all 
the physics involved

● Ensures capture of strongly 
coupled physical phenomena

● Solution may be numerically ‘stiff’

Many loosely coupled simulations

● Use best in class for each domain

● Couple together with a third party 
library and iterate

● Temporal accuracy may suffer

● Easy to decouple irrelevant physics
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Selecting a Finite Element Library
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Criterion One – Parallel First

Exascale simulation

Designed as a parallel code from the outset

Optimised for HPC environment
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Criterion Two – Permissively Licensed

Any location, including w/o internet

Any number of processes

Extension and modification permitted

Open Source?
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Criterion Three - Portable

What does the exascale look like?

Vectorised?  Mixed-mode?  GPU?
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Criterion Four - Extensible

Open to external contribution

Good software engineering practices
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Criterion Five - Supported

User community – forums, mailing lists, IRC, 
workshops and tutorials

Documentation – for both user and developer
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Implicit Criterion – Compiled Language

Interpreted languages incur an overhead

Example: FEniCS versus DOLFIN

When scaled up, every little helps
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Implicit Criteria – Stable API, Actively Developed

A reliable library must have a stable API,
thus not in ‘alpha’ or ‘beta’ development

To be actively supported,
it must actively developed
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Initial survey found 35 potential candidates

Eliminated those that were:
Not parallel-first / HPC
In early development

Poorly supported
Inextensible
Abandoned

Initial Survey and Elimination
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Shortlist

● deal.ii www.dealii.org 
● DUNE www.dune-project.org
● DOLFIN fenicsproject.org
● libMesh libmesh.github.io
● MFEM mfem.org
● MOOSE mooseframework.org
● Nektar++ www.nektar.info
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Performance Measurement – Problem Definition

● Steady State: Poisson Equation ● Time Dependent: Heat Equation
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Performance Measurement – Mesh Definition

http://gmsh.info
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Dealbreaker
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Results – Memory Usage
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Results – Scaling (Total Time)
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Results – Scaling (Solver Time)
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Results – Wall Time
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Results – Honourable Mentions

MFEM – Highly portable, few dependencies,
clear and simple build process

MOOSE – Multiphysics coupling design
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Conclusions

All things considered, there is no clear winner
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Picking A Winner

s final=w p r p+wq rq

w=weight , r=rank , x p=performance , xq=quality

sq=wi si+wu su+wd sd

s=score , x i=installation , xu=usability , xd=documentation
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Summary – Important Aspects of HPC Software

● In HPC, performance and scalability are essential
● A well documented, easy to use and portable build 

process
● User interaction is still important, consider how data will 

go in and out - support common, open formats
● Good documentation:

– Tutorials
– Examples
– Source Comments
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Thank You For Listening

Any Questions?
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