
| 1/29

Selecting a Finite Element Analysis Backend
for Exascale Fusion Reactor Simulations

| 2/29

A Brief Introduction to Fusion
Producing Energy with Magnetically Confined Plasma

| 3/29

The Physics Behind Fusion

n + 14,1 МеВn + 14.1 MeV

He + 3,5 МеВHe + 3.5 MeV44

HH33HH22

| 4/29

Magnetic Confinement - The Tokamak

Image Copyright © S. Li, H. Jiang, Z. Ren, C. Xu, 2014 CC-BY-4.0​

| 5/29

ITER

Image Copyright © Oak Ridge National Laboratory, 2016 CC-BY-2.0​

| 6/29

Engineering Analysis Challenges

| 7/29

Two Approaches

Single tightly coupled simulation

● One single program

● Solve a large linear system for all
the physics involved

● Ensures capture of strongly
coupled physical phenomena

● Solution may be numerically ‘stiff’

Many loosely coupled simulations

● Use best in class for each domain

● Couple together with a third party
library and iterate

● Temporal accuracy may suffer

● Easy to decouple irrelevant physics

| 8/29

Selecting a Finite Element Library

| 9/29

Criterion One – Parallel First

Exascale simulation

Designed as a parallel code from the outset

Optimised for HPC environment

| 10/29

Criterion Two – Permissively Licensed

Any location, including w/o internet

Any number of processes

Extension and modification permitted

Open Source?

| 11/29

Criterion Three - Portable

What does the exascale look like?

Vectorised? Mixed-mode? GPU?

| 12/29

Criterion Four - Extensible

Open to external contribution

Good software engineering practices

| 13/29

Criterion Five - Supported

User community – forums, mailing lists, IRC,
workshops and tutorials

Documentation – for both user and developer

| 14/29

Implicit Criterion – Compiled Language

Interpreted languages incur an overhead

Example: FEniCS versus DOLFIN

When scaled up, every little helps

| 15/29

Implicit Criteria – Stable API, Actively Developed

A reliable library must have a stable API,
thus not in ‘alpha’ or ‘beta’ development

To be actively supported,
it must actively developed

| 16/29

Initial survey found 35 potential candidates

Eliminated those that were:
Not parallel-first / HPC
In early development

Poorly supported
Inextensible
Abandoned

Initial Survey and Elimination

| 17/29

Shortlist

● deal.ii www.dealii.org
● DUNE www.dune-project.org
● DOLFIN fenicsproject.org
● libMesh libmesh.github.io
● MFEM mfem.org
● MOOSE mooseframework.org
● Nektar++ www.nektar.info

| 18/29

Performance Measurement – Problem Definition

● Steady State: Poisson Equation ● Time Dependent: Heat Equation

−∇
2u=f

∂u
∂ t

−∇
2u=f

| 19/29

Performance Measurement – Mesh Definition

http://gmsh.info

| 20/29

Dealbreaker

| 21/29

Results – Memory Usage

| 22/29

Results – Scaling (Total Time)

| 23/29

Results – Scaling (Solver Time)

| 24/29

Results – Wall Time

| 25/29

Results – Honourable Mentions

MFEM – Highly portable, few dependencies,
clear and simple build process

MOOSE – Multiphysics coupling design

| 26/29

Conclusions

All things considered, there is no clear winner

| 27/29

Picking A Winner

s final=w p r p+wq rq

w=weight , r=rank , x p=performance , xq=quality

sq=wi si+wu su+wd sd

s=score , x i=installation , xu=usability , xd=documentation

| 28/29

Summary – Important Aspects of HPC Software

● In HPC, performance and scalability are essential
● A well documented, easy to use and portable build

process
● User interaction is still important, consider how data will

go in and out - support common, open formats
● Good documentation:

– Tutorials
– Examples
– Source Comments

| 29/29

Thank You For Listening

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

