ROS2: The evolution of Robot Operative System

www.openrobotics.org

Jose Luis Rivero Open Robotics

Open Robotics

- We create open software and hardware platforms for
- robotics. We use those platforms to solve important
 - problems and we help others to do the same.

The origin of ROS 1.x

First release 2007 -Ongoing

ROS: open source SDK to build robot software

ROS principles

Distribution

Price: ~1100€ Weight: 1Kg

19.2cm

360° Laser Distance Sensor LDS-01

Wheels (Dynamixel actuators)

Remote controller

EROS.org

Documentation

ps3joy

1			
	indigo	kinetic	luna

Documentation Status

joystick_drivers: joy | ps3joy | spacenav_node | wiimote

Package Summary

Released

Playstation 3 SIXAXIS or DUAL SHOCK 3 joystick driver. Driver for the Sony PlayStation 3 UAL SHOCK 3 joysticks. In its current state, this driver is not compatible with SIXA er Bluetooth HID devices. The driver listens for a connection on the HID ports, streaming data, and passes the data to the Linux uinput device so that it SONY rmal joystick.

Remote controller

Browse Software

Continuous Integration: 1 / 1 - Ocumented

Package Links Code API Tutorials Troubleshooting FAQ Changelog Change List Reviews

Dependencies (5) llead by (4)

naming and registration

/joy

register hode

- Publish / subscribe messaging
- Discovery, transport, serialization
- Isolate components from each other
- Allow independent development

timestamp in the header i Header header # the axes measurements fro float32[] axes # the buttons measurements int32[] buttons

10

This expresses velocity in free space Vector3 linear angular Vector3

• Well-defined interfaces

• Syntax & semantics

• Tools target generic interfaces

• Support multiple languages

360° Laser Distance Sensor LDS-01

EROS.org

About | Support | Discussion Forum | Service Status | Q&A answers.r

Documentation

Browse Software

hls_lfcd_lds_driver

kinetic melodic

Documentation Status

Package Summary

Released Continuous Integration Continued

ROS package for LDS(HLS-LFCD2). The LDS (Laser Distance Sensor) is a sensor sending the data to Host for the simultaneous localization and mapping (SLAM). Simultaneously the detecting obstacle data can also be sent to Host. HLDS(Hitachi-LG Data Storage) is developing the technology for the moving platform sensor such as Robot Vacuum Cleaners, Home Robot, Robotics Lawn Mower Sensor, etc.

ROS MASTER

Raw Message Definition

Single scan from a planar laser range-finder

If you have another ranging device with different behavior (e.g. a sonar # array), please find or create a different message, since applications # will make fairly laser-specific assumptions about this data

er header	<pre># timestamp in the header is the acquisition t # the first ray in the scan. # # in frame frame_id, angles are measured aroun # the positive Z axis (counterclockwise, if Z # with zero angle being forward along the x ax</pre>
t32 angle_min t32 angle_max t32 angle_increment	<pre># start angle of the scan [rad] # end angle of the scan [rad] # angular distance between measurements [rad]</pre>
t32 time_increment t32 scan_time	<pre># time between measurements [seconds] - if you # is moving, this will be used in interpolatin # of 3d points # time between scans [seconds]</pre>
t32 range_min t32 range_max	<pre># minimum range value [m] # maximum range value [m]</pre>
t32[] ranges t32[] intensities	<pre># range data [m] (Note: values < range_min or # intensity data [device-specific units]. If # device does not provide intensities, please # the array empty.</pre>

12

time

💭 Displays	ж		🛏 Views	
Global Options	odom		Type: XYOrbit (rviz)	; Z
Fixed Frame Background Color Frame Rate • ✓ Global Status: Ok • © Grid • ▲ Axes • ♣ RobotModel • ✓ Status: Ok Visual Enabled Collision Enabled Update Interval Alpha Robot Description TF Prefix • Links • ✓ Odometry • ✓ Status: Ok Topic Color Position Tolerance Keep Length • J TF	odom 255; 255; 255 30		Current View XY Near Clip ofi Distance 0.4 Cocal Sha Yaw 0.7 Pitch 0.7 Focal Point 0.0	Drbit (r 1 xed Fran 03429 5 85398 21407; 0
477.2	ROS Elapsed: 15.55	Wall Time: 1496356477.29 Wall Elapsed: 15.49		Experim
	and here a second second second	The second se		

Topic Monitor

Topic *	Туре	Bandw
Topic ▼ Values	Type diagnostic_msgs/DiagnosticArray std_msgs/Header diagnostic_msgs/DiagnosticStatus[] diagnostic_msgs/DiagnosticStatus string diagnostic_msgs/KeyValue[] diagnostic_msgs/DiagnosticStatus string string diagnostic_msgs/KeyValue[] diagnostic_msgs/DiagnosticStatus string byte string diagnostic_msgs/KeyValue[] diagnostic_msgs/KeyValue[] diagnostic_msgs/KeyValue[] diagnostic_msgs/DiagnosticStatus string byte string diagnostic_msgs/KeyValue[] diagnostic_msgs/DiagnosticStatus string byte string diagnostic_msgs/KeyValue[] diagnostic_msg	Bandw 276.41
level message name	byte string string	

			DC
idth	Hz	Value	
B/s	1.00		

'MPU9250' 0 'Good Condition' 'IMU Sensor' [] 'DYNAMIXEL X' 0 'Torque ON' 'Actuator' [] 'HLS-LFCD-LDS' 0 'Good Condition' 'Lidar Sensor' [] 'Battery' 0 'Good Condition' 'Power System' [] 'OpenCR Button' 0 'Pushed Nothing' 'Analog Button'

.

Introspection **EXAMPLE** ROS

- All important data on the message bus
- Support incremental system exploration
- GUIs are always external tools
- Could build apps from CLI tools

32 bits Microcontroller

RaspBerry Pi

Wheels (Dynamixel actuators)

EROS.org

About | Support | Discussion Forum | Service Status | Q&A answers.ros.org

Documentation

Browse Software

rosserial

Documentation Status

rosserial: rosserial_client | rosserial_msgs | rosserial_python

Package Summary

Released Continuous Integration: 12 / 12 - Ocumented

Metapackage for core of rosserial.

- Maintainer status: maintained
- Maintainer: Paul Bouchier <paul.bouchier AT gmail DOT com>, AT clearpathrobotics DOT com>
- Author: Michael Ferguson
- License: BSD
- Source: git https://github.com/ros-drivers/rosserial.git (branch: melodic-devel)

Wheels (Dynamixel actuators)

Tutorials FAQ Changelog Change List Reviews Dependencies (4) Jenkins jobs (9)

News

Package Links

III ROS.org

About | Support | Discussion Forum | Service Status | Q&A answers.ros.org

Documentation

Browse Software New

rosserial

ind	ta at b	Show EOL dia	trac	
Docu	∷RO	S.org	About Suppor	t Discussion Forum Service Status
P	Docum	entation	Brov	vse Software
Veta	ps3joy indigo kinet	EROS.	org	About Support Discussion Forum S
	Documentation S joystick_drivers	Document	ation	Browse Softw
	Packa	hls_lfcd_lds_dr kinetic melodic	river	
	Playstation 3 SIX SIXAXIS or DUA the use of other I starts the joystick	Documentation Status Package S	Summar	у
	shows up as a no	Released Continuou	s Integration 🗸 Do	ocumented

ROS package for LDS(HLS-LFCD2). The LDS (Laser Distance Sensor) is a sensor sending the data to Host for the simultaneous localization and mapping (SLAM). Simultaneously the detecting obstacle data can also be sent to Host. HLDS(Hitachi-LG Data Storage) is developing the technology for the moving platform sensor such as Robot Vacuum Cleaners, Home Robot, Robotics Lawn Mower Sensor, etc.

Home > Repos

ABOUT

	D	ASHI	NG	CRYSTAL	BOUNC
Re	pos	itor	ies		
	4	Ľ	C	Name	Packa
1	4		2019-06-06	<u>rqt</u>	rqt
1	4		2019-06-06	rosbag2_bag_v2	ros1_r
1	4		2019-06-06	<u>qt_gui_core</u>	qt_dot
1	4	L	2019-06-05	<u>gazebo_ros_pkgs</u>	gazebo
1		Ľ	2019-06-04	realtime_tools	realtim
2	4	Ľ	2019-06-03	system_modes	system
2	4	Ľ	2019-05-31	vision_opencv	cv_brid
2	4	Ľ	2019-05-31	teleop_twist_joy	teleop
1	4		2019-05-31	rosidl_python	pythor
1	4	Ľ	2019-05-31	ros2_object_analytics	object
1	4	Ľ	2019-05-31	ros2_intel_realsense	realser
1	4		2019-05-31	<u>rclcpp</u>	rclcpp
1	4		2019-05-31	launch_ros	launch
2	4		2019-05-31	joystick_drivers	јоу

Federation **EXAMPLE ROS**

- Let the code live where authors prefer
- Allow for independent releases
- Lower barrier for contributors
- Authors have control, branding, credit
- Requires tools for devs and Cl

ABOUT

Но	ome	> F	Repos		
	D	ASHI	NG	CRYSTAL	BOUNCY
Re	pos	itori	ies		
	4	Ŀ	C	Name	Packages
1	4		2019-06-06	<u>rqt</u>	rqt rqt_gui
1	4		2019-06-06	rosbag2_bag_v2	ros1_rosbag_s
1	4		2019-06-06	<u>qt_gui_core</u>	qt_dotgraph
1	4	Ľ	2019-06-05	<u>gazebo_ros_pkgs</u>	gazebo_dev
1		Ľ	2019-06-04	realtime_tools	realtime_tools
2	4	Ľ	2019-06-03	system_modes	system_modes
2	4	Ľ	2019-05-31	vision_opencv	cv_bridge i
2	4	L	2019-05-31	<u>teleop_twist_joy</u>	teleop_twist_j
1	4		2019-05-31	rosidl_python	python_cmake
1	4	L	2019-05-31	ros2_object_analytics	object_analyti
1	4	L	2019-05-31	ros2_intel_realsense	realsense_cam
1	4		2019-05-31	<u>rclcpp</u>	rclcpp
1	4		2019-05-31	launch_ros	launch_ros
2	4		2019-05-31	joystick_drivers	joy

The next generation

First release 2018 -Ongoing

ROS 2: Goals

Quality of design & implementation

Real-time control & deterministic execution

Validation, verification, and certification

Flexibility in communication

Support for small embedded systems

Use case: unstable networks or high latency scenarios

Ø

Architectural changes

ROS 1

user code (nodes) Master			
C++ client library Python clier (roscpp) (rosp		nt library y)	
TCPRO	S/UPDROS		
Linux			
Microprocessor			

Towards ROS2

Data-Distribution Service Standard

for real-time and embedded systems."

"... DDS features fine and extensive control of QoS parameters, including reliability, bandwidth, delivery deadlines, and resource limits. ..."

"The OMG Data-Distribution Service for Real-Time Systems (DDS) is the first open international middleware standard directly addressing publish-subscribe communications

Architectural changes

ROS 1

user code (nodes) Master			
C++ client library (roscpp) (rosp		nt library y)	
TCPRO	S/UPDROS		
Linux			
Microprocessor			

user code (nodes	Master				
rclcpp (C++)	rclpy (Python)	rcljava (Java	1)		
F	ROS client library (rcl)				
ROS abst	ROS abstract middleware (rmw)				
Cyclone DDS	FastRTPS	Eclipse iceoryx			
Linux / Mac / Windows					
Microprocessor					

Use case: manage groups of robots

ROS MASTER

Where?

Architectural changes

ROS2

user code (nodes)	Master			
rclcpp (C++)	rclpy (Python)	rcljava (Java)		
ROS client library (rcl)				
ROS abstr	ROS abstract middleware (rmw)			
Cyclone DDS	Cyclone DDS FastRTPS			
Linux / Mac / Windows				
Microprocessor				

"Effective data communication between publishers and subscribers requires dynamic and reliable discovery of publisher/subscriber endpoints in the system, which DDS currently supports viaa standardized approach called the Simple Discovery Protocol (SDP)"[1]

[1] <u>https://www.dre.vanderbilt.edu/~schmidt/PDF/debs2014_submission_163.pdf</u>

Use case: small systems as first-class ROS systems

	8/16-bit MCU	32-bit MCU	ARM A-class smartphone without screen	SFF x86 laptop without screen
Example Chip	Atmel AVR	STM32	Samsung Exynos	Intel Core i5
Example System	Arduino Leonardo	Pixhawk PX4	ODROID	Intel NUC
MIPS	10's	100's	1000's	10000's
RAM	1-32 KB	4-256 KB	a few GB (off-chip)	2-16 GB (SODIMM)
Max power	10's of mW	100's of mW	1000's of mW	10000's of mW
Comms peripherals	UART, USB FS,	USB HS, Ethernet	Gigabit Ethernet	USB SS, PCle

https://roscon.ros.org/2015/presentations/ros2_on_small_embedded_systems.pdf

32 bits Microcontroller

RaspBerry Pi

Wheels (Dynamixel actuators)

32 bits Microcontroller

rosserial protocol

> battery state IMU values

velocity and servo commands

RaspBerry Pi

ROS2

user code (nodes)					
rclcpp (C++)	rclpy (Python)	rcljava (Java)			
ROS client library (rcl)					
ROS abstract middleware (rmw)					
Connext DDS	FastRTPS	Eclipse iceoryx			
Linux / Mac / Windows					
Microprocessor					

Micro-ROS

user code (nodes)				
rclcpp (C++)				
ROS client library (rcl)	Predictable Execution			
ROS abstract middleware (rmw)				
XRCE-DDS (eXtremely Resource Constrained Environments)				
NuttX (RTOS)				
Microcontroller				

32 bits Microcontroller

rosserial protocol

> battery state IMU values

velocity and servo commands

RaspBerry Pi

32 bits Microcontroller

turtlebot3_core

More and more features ...

ROS 2: other features

Real time capabilities

- ROS2 design facilitates to implement real-time compliant
- Not only Micro-ROS, also other approaches
- Not only NuttX but FreeRTOS, VxWorks or QNX

More: lifecycle for nodes, run multiples nodes in a single process, deterministic starting sequence, OpenEmbedded/Yocto support, etc.

Security

- ROSI has no security by design feature not a bug;)
- ROS2 integrates security from DDS
- Features are: authentication, access control, cryptographic support, ect.

Thanks! Questions?

