Comparing dependency issues across
software package distributions

Tom Mens

Software Engineering Lab
Faculty of Sciences

UMONS

Université de Mons

FOSDEM20

/) 7 RRR
7075 sl ess ool cosmsnsernnenaa Y Brussels / 1 & 2 February 2020

@ @tom_mens

tom.mens@umons.ac.be

UMONS excetience of Science:

iversite BRUSSEL
Université de Mons 2018-2021
EB @secoassist secoassist.github.io w &
BE",{,E{‘,&.'JE Universiteit
Antwerpen

/|

e
SECO-ASSIST

fwo

Comparing dependency issues across
software package distributions

An Empirical Comparison of Dependency Network Evolution in Seven Software Packaging
Ecosystems

A Decan, T. Mens, Ph. Grosjean (2019) Empirical Software Engineering 24(1)

What do package dependencies tell us about semantic versioning?

A Decan, T Mens (2019) IEEE Transactions on Software Engineering

N JAE & LY EF -
A formal framework for measuring technical lag in component repositories
—and its application to npm

A Zerouali, T Mens, et al. (2019) J. Software Evolution and Process
= W R s

On the impact of security vulnerabilities in the nom package dependency network
A Decan, T Mens, E Constantinou (2018) Int’l Conf. Mining Software Repositories

—
&£ E e W | _ ——

On the evolution of technical lag in the npom package dependency network
A Decan, T Mens, E Constantinou (2018) Int’l Conf. Software Maintenance and Evolution

i\!i\i A

IT'S AMAZING HOW SUCH
A SMALL THING CFIN DO

Dependency issues B

MONLEYVSER .CoM

IT'S AMAZING HOW SUCH
A SMALL THING CAN DO

Dependency issues B

“Technical lag” due to outdated dependencies ‘ 5 ’ ‘ =, o)

Missed opportunities to benefit from

new functionality, or fixes of known bugs and
security vulnerabilities

“Dependency hell”

* Too many direct and transitive dependencies

* Broken dependencies due to backward
incompatibilities

* Co-installability problems

Unmaintained packages

due to departure of maintainers

Nontransparent update policies

Incompatible or prohibited licenses

IN=0=

MONLEYVSER .CoM

Incompatible licenses

https://tidelift.com

dependencyci

We've researched these licenses so you can enforce your licenses policies with confidence.

» Converted to SPDX format (11)
> Lifter verified (13)

> Correct (251)

A package has no known license unlicensed
A release has security vulnerabilities vulnerable
A release has known critical bugs broken
A package uses a disallowed license license_prohibited
A package is using an inactive release stream inactive_stream

fail

fail

fail

fail

warn

https://tidelift.com/

Fragility due to transitive dependencies

npm

March 2016

November 2010

Unexpected removal of left-pad
caused > 2% of all packages

to become uninstallable

(> 5,400 packages)

Software » Developer

How one developer just broke Node, Babel and
thousands of projects in 11 lines of JavaScript

Code pulled from NPM — which everyone was using

Careful, careful ... Don't fumble this like the JS world (Credit: Claus Rebler)

23 Mar 2016 at 01:24, Chris Williams S (v} (£) @ 1320

Release 0.5.0 of i18n broke dependent package
ActiveRecord that was transitively required by

>5% of all packages

Libraries.io monitors 6,901,989 open source packages

1 A 1.82M Packages

‘ NuGet
199K Packages

CocoaPods
67.8K Packages

Clojars
24.3K Packages

Atom
12.8K Packages

? Puppet

p 6.43K Packages

Carthage
3.87K Packages

&7 conda

% 1.85K Packages
i am] Nimble
1.19K Packages
Inglude
224 Packages

5 « @

~

-

® o €

);E

7

-

v}
=
L

§

npm
1.27M Packages

Maven
185K Packages

WordPress

65.5K Packages

CRAN

16.7K Packages

Pub
9.97K Packages

Emacs
4.87K Packages

Julia
3.05K Packages

Racket
1.67K Packages

Jam
772 Packages

Shards

33 Packages

¥
<

Cr&N

BeéeC¥

OA

A<

KL
ab

https://libraries.io

across 37 different package managers

Packagist
312K Packages

Rubygems

161K Packages

CPAN

37.5K Packages

Hackage
14.5K Packages

Hex
9.44K Packages

Homebrew
4.7K Packages

Sublime
2.01K Packages

Elm

1.51K Packages

Alcatraz
464 Packages

& VR =

PyPI

231K Packages

Bower
69.7K Packages

Cargo
35.4K Packages
B Meteor
ANl 13.4K Packages
f-NI PlatformlO
\@/ 6.67K Packages
SwiftPM
4.21K Packages
Dub
1.9K Packages
Haxelib
1.42K Packages
==y PureScript
(= 384 Packages
(7 January 2020)

https://libraries.io/

Characterising the evolution of
package dependency networks

@
Bl

830K packages — 5.8M package versions — 20.5M dependencies (April 2017)

Manager Creation Lang. Pkg. Rel. Deps.
Cargo 2014 Rust 9k 48k 150k
CPAN 1995 Perl 34k 259k 1,078k
CRAN 1997 R 12k 67k 164k
npm 2010 JavaScript 462k | 3,038k | 13,611k
NuGet 2010 NET 84k 936k 1,665k
Packagist 2012 PHP 97k 669k 1,863k
RubyGems 2004 Ruby 132k 795k 1,894k

Decan & Mens (2019) An Empirical Comparison of Dependency Network Evolution in
Seven Software Packaging Ecosystems. Empirical Software Engineering Journal

jﬁﬁg Continuing Growth

Package dependency networks grow exponentially in
terms of number of packages and/or dependencies

107

- cargo = npm packagist
- cpan —=— nuget = rubygems
= _Cran

104

Fastest growth for npm

[N
o
o

number of dependencies (log)

[EnN
o
w

Slowest growth for CRAN

2012 2013 2014 2015 2016 2017

ﬁ? Continuing Change

* Number of package updates grows over time
* >50% of package releases are updated within 2 months

* Required and young packages are updated more frequently

106
— cargo = npm packagist
— cpan ——— nuget —— rubygems

105 —
= cran

104

number of updates (log)

Fastest growth for npm
Slowest growth for CRAN

101

100
2012 2013 2014 2015 2016 2017

ﬂag Increasing level of reuse
A" N

-

* Highly connected network, containing 60% to 80% of all packages

* Power law behavior: A stable minority (20%) of required packages
collect over 80% of all reverse dependencies

Reusability index: Maximal value n such that there exist n
required packages having at least n dependent packages.

—— cargo

350 = cpan
— cran
300 -~ —— npm
—— nuget
250 packagist
— rubygems
200
150
100 —
—_
50
/
e

High number of deep

o @
&, transitive dependencies

i

* Fragile packages may have a very high transitive impact

* Over 50% of top-level packages have a deep dependency graph

Number of packages that are transitively Transitive dependency depth
. required by at least 5% of all packages. of top-level packages
— cargo cargo cpan cran npm nuget packagist rubygems
250 : cpan "
" — npm %
:’%‘7 200 —— nuget _é
=< packagist S04
s —— rubygems ¢
é 150 %.03
———" 7= U illalle bl . U
7 T oo MN__ 18 il e II
123456+ 123456+ 123456+ 123456+ 123456+ 123456+ 123456+

2012 2013 2014 2015 2016

Outdated

£
/f#?\ Dependencies

Should package maintainers upgrade their
dependencies to more recent versions?

& Upgrades benefit from bug and security fixes
Up-to-date Outdated

@ Upgrading allows to use new features v

@ Upgrading requires effort

@ Upgrading may introduce breaking changes ﬂ

ﬁ .
j\ﬁg,\ Outdated Dependencies

Outdatedness is related to the type of dependency constraint being used

Strict (i.e. pinned) constraints represent

about 33% of all outdated dependencies

Outdated runtime dependencies in npm caret

PI‘()])UI'UHII of
constraint types

10U

H) M E

Y

— |latest

rMS

S

other tilde
strict

0

vvvvv

2011 2012 2013 2014

2015 2016 2017 2018

Technical Lag

1
Bl

Technical lag measures how outdated a package or dependency is
w.r.t. the “ideal” situation

”n, u ”n, u

where “ideal” = “most recent”; “most secure”; ”least bugs”; “most compatible”; ...

A Zerouali et al (Feb. 2019) A formal framework for measuring technical lag in component
repositories — and its application to nom. Wiley Journal on Software Evolution and Process

L :
ﬁ?\ Technical Lag

Technical lag measures how outdated a package or dependency is
w.r.t. the “ideal” situation

In ”n, u ”n, u

= “most recent”; “most secure”; "least bugs”; “most compatible”; ...

4 N

where “idea

load-script

1.0.0 - 08-03-2015
0 L J

1.0
) . debug ms
youtube-player "@ 2.7.0 - 22-09-2017 "@ 2.0.1 - 16-05-2017

A

A

. . >
2009 A missed versions: i .
5.5.0 - 20-02-2018 2.6.6 3.00 - 08-08-2017 ~2.0.0 rszsaed v;(;fﬂ?:bu
\ J 3.0.1 - 24-08-2017 2'1'1 - 30-11-2017
3.1.0 - 26-09-2017 -)

\ S

\

sister

3.0.0 - 03-11-2014

S

Need for dependency

g @
/lv\#ﬁ;\ monitoring tools

Example: David Dependency Manager for npm projects

My npm Project 4131 https://david-dm.org

Wrapper around libsass
& DEPENDENCIES DEVDEPENDENCIES B LIST & TREE
17 Dependencies total W o Up to date Wl 0 Pinned, out of date B 8 Out of date
DEPENDENCY REQUIRED STABLE LATEST STATUS
async-foreach ~0.1.3 0.1.3 0.1.3 (-
chalk A1.1.1 3.0.0 3.0.0]
Cross-spawn 73.0.0 7.0.1 7.0.1]
gaze A1.0.0 1.1.3 1.1.3 -
get-stdin A4.0.1 7.0.0 7.0.0 N
oloh ~7.03 716 716 (-

https://david-dm.org/

QQ Avoiding breaking changes
ﬂ k. through Semantic Versioning

|s semantic versioning respected by software package distributions?

« 3
* ' ¥ Backwards ‘ . :
Breaking compatible Bug fixes
changes changes

Most
Restrictive

major B o P patch .

] m, TMer A J)IEEETra € Software Strict |

Most
permissive

A

$§ Semantic versioning
!

Different package managers interpret version constraints in different ways:

'y ngm v ®
Constr. Cargo npm Packagist Rubygems
=1.0.0 [1.0.0] [1.0.0] [1.0.01 [1
1.0.0 | [1.0.0, 2.0.0[[1.0.0] ‘ More restrictive than sem(\)/-eD;L‘
1.0 | [1.0.0,2.0.0] [1.0.0, 1.1.uy | L.U.U| | L.U.U|
1 | [1.0.0,2.0.0] [1.0.0,2.0.0[[1.0.0] [1.0.0]
~1.23 | [1.23,1.3.0] [1.2.3,1.30[[1.23,1.3.0] [1.2.3,1.3.0]
~12 | [1.20,13.0] [1.2.0,1.3.0[[1.2.0,2.0.0] [1.2.0,2.0.0]
~1 | [1.0.0,2.0.0] [1.0.0,2.0.0] [1.0.0,2.0.0 N/A
A"1.23 | [1.23,2.0.0] [1.2.3,2.00] [1.2.3,2.0.0] N/A
>1.23 | J1.23, +pal 1122 dnal 1122 doo]]1.2.3, +o0]
~0.1.2 | [0.1.2, (| More permissive than semver | O] [0.1.2, 0.2.0]
20.1.2 | [0.1.2,0.20] |U.1.2, 0.20] |U.L1.2,0.2.0] N/A

3O <o verson
¥ Semantic versionin
/f\# K .

prop. of constraints

o
N

e Cargo, npm and Packagist are mostly semver-compliant.
All three are more permissive than semver for 0.y.z versions

* All considered ecosystems become more compliant over

time.

* >16% of restrictive constraints in npm, Packagist and

Rubygems

=>» prevents adoption of backward compatible upgrades

Cargo

=
o

NPM

Packagist

ot
©

o
o

4 —— compliant
permissive

o
IS

4 —— restrictive
0.0 /*/\/\-V/\N

L

2013 2014 2015 2016 2017

2013 2014 2015 2016 2017

2013 2014 2015 2016 2017

Rubygems

2013 2014 2015 2016 2017

. Y‘;‘E Security vulnerabilities @DLUHSD

OWASP Foundation Top 10 Application Security Risks

AS - Using Components with Known Vulnerabilities

You are likely vulnerable:

If you do not know the versions of all components you use ... This includes
components you directly use as well as nested dependencies.

If software is vulnerable, unsupported, or out of date. This includes the OS,
web/application server, database management system (DBMS), applications, APIs
and all components, runtime environments, and libraries.

If you do not scan for vulnerabilities regularly and subscribe to security bulletins
related to the components you use.

If you do not fix or upgrade the underlying platform, frameworks, and dependencies in
a risk-based, timely fashion. This commonly happens in environments when patching
is @ monthly or quarterly task under change control, which leaves organizations open
to many days or months of unnecessary exposure to fixed vulnerabilities.

If software developers do not test the compatibility of updated, upgraded, or patched
libraries.

g SA\ | o
7’2“”"’ Security vulnerabilities in npm

f
Vulnerable packages

vulnerabilities 399

vulnerable packages 269 (@“
releases of vulnerable packages 14,931
vulnerable releases 6,752 (45%)

dependent packages 133,602

dependent packages affected by the 72,470 (54%)

vulnerable packages

On the impact of security vulnerabilities in the npm package dependency network.
A Decan, T Mens, E Constantinou (2018) Int’l Conf. Mining Software Repositories

Fg A . o
JE&mp Security vulnerabilities in npm
5 eﬁﬂ When are vulnerabilities discovered?

1.0
severity

2 0.8 - — low
= —— medium
g 0.6 - — high
o — ALL
© 0.4 -
>
2
> 0.2

O-O I I = I I 1 1

0 10 20 30 40 50 60 70 80

delay (in months)

>40% of all vulnerabilities are not discovered even 2.5
years after their introduction, regardless of their severity.

m Securlty vulnerabilities in npm
When are vulnerabilities fixed?

severity
2 0.8 — low
% —— medium
5 06 —— high
Q. — ALL
‘© 0.4 A
>
2
2 0.2
0.0 T — . . .
0 5 10 15 20 25 30 35 40

delay (in months)

~20% of vulnerabilities take more than 1 year to be fixed.

When are vulnerabilities fixed in
dependent packages?

moment of fix
before upstream fix i after upstream fix
o at upstream fix i not fixed

o
(0]
1

o
(@)
1

o
EaN
]

0.2

)]
)
(e
(O]
©
C
(O]
o
(O]
©
Y—
(@]
C
(@]
e,
| -
(@]
o
(@]
—
o

o
o
L

low medium high ALL
severity

>33% of all affected dependents are not (yet) fixed!

3@\ Security vulnerabilities in npm
s ﬂ Why do vulnerabilities remain unfixed
ﬂﬁ in dependent packages?

Improper or too restrictive use of dependency
constraints
O

e — U Package is no longer actively maintained

=y /)\

Maintainers are unaware of the | ;)
vulnerability or how to fix it W

/

- Jé \ Fixed version of the dependency contains

, VT incompatible changes

E
g““‘" Tool support: Monitor and update
ﬂfﬂﬂ vulnerable dependencies

GitHub

Automated security alerts and updates
https://help.github.com/en/github/managing-security-vulnerabilities

Snyk
Continuously find and fix known vulnerabilities in a package’s dependencies
https://snyk.io

Retire.js No known vulnerabilities

Scans for the use of JavaScript libraries with known vulnerabilities
http://retirejs.github.io/retire.js/

OWASP Dependency-Check

@ ULUHSD Detects publicly disclosed vulnerabilities contained within a project’s dependencies.
https://github.com/jeremylong/DependencyCheck

Eclipse Steady

Detects known vulnerabilitis in dependencies to open source Java and Python components through
combination of static and dynamic analysis techniques

https://eclipse.github.io/steady/

https://help.github.com/en/github/managing-security-vulnerabilities
https://snyk.io/
http://retirejs.github.io/retire.js/
https://github.com/jeremylong/DependencyCheck
https://eclipse.github.io/steady/

Conclusion

* Package dependency networks are affected my multiple
dependency issues
* Many and deep transitive dependencies
e Outdated dependencies
* Breaking changes
* Vulnerable dependencies

* Automated tools and policies can help mitigating these

issues

* Measuring, monitoring and updating outdated and vulnerable
dependencies

* Supporting semantic versioning
e Supporting transitive dependencies

* Detecting vulnerabilities that matter
(avoid false positives/negatives)

