
Tom Mens
Software Engineering Lab

Faculty of Sciences

tom.mens@umons.ac.be

@tom_mens

Comparing dependency issues across
software package distributions

SECO-ASSIST

"Excellence of Science”
Research Project
2018-2021

secoassist.github.io@secoassist

Comparing dependency issues across
software package distributions

An Empirical Comparison of Dependency Network Evolution in Seven Software Packaging
Ecosystems
A Decan, T. Mens, Ph. Grosjean (2019) Empirical Software Engineering 24(1)

What do package dependencies tell us about semantic versioning?
A Decan, T Mens (2019) IEEE Transactions on Software Engineering

A formal framework for measuring technical lag in component repositories
– and its application to npm
A Zerouali, T Mens, et al. (2019) J. Software Evolution and Process

On the impact of security vulnerabilities in the npm package dependency network
A Decan, T Mens, E Constantinou (2018) Int’l Conf. Mining Software Repositories

On the evolution of technical lag in the npm package dependency network
A Decan, T Mens, E Constantinou (2018) Int’l Conf. Software Maintenance and Evolution

Dependency issues

Dependency issues
“Technical lag” due to outdated dependencies

Missed opportunities to benefit from
new functionality, or fixes of known bugs and
security vulnerabilities

“Dependency hell”
• Too many direct and transitive dependencies
• Broken dependencies due to backward

incompatibilities
• Co-installability problems

Unmaintained packages
due to departure of maintainers

Nontransparent update policies

Incompatible or prohibited licenses

Incompatible licenses

https://tidelift.com

https://tidelift.com/

Fragility due to transitive dependencies

March 2016

November 2010

Unexpected removal of left-pad
caused > 2% of all packages
to become uninstallable
(> 5,400 packages)

Release 0.5.0 of i18n broke dependent package
ActiveRecord that was transitively required by
>5% of all packages

Libraries.io monitors 6,901,989 open source packages
across 37 different package managers

https://libraries.io (7 January 2020)

https://libraries.io/

Characterising the evolution of
package dependency networks

Decan & Mens (2019) An Empirical Comparison of Dependency Network Evolution in
Seven Software Packaging Ecosystems. Empirical Software Engineering Journal

830K packages – 5.8M package versions – 20.5M dependencies (April 2017)

Continuing Growth

Package dependency networks grow exponentially in
terms of number of packages and/or dependencies

Fastest growth for npm
Slowest growth for CRAN

Continuing Change

• Number of package updates grows over time
• >50% of package releases are updated within 2 months
• Required and young packages are updated more frequently

2012 2013 2014 2015 2016 2017
100

101

102

103

104

105

106

nu
m
be
r
of
 u
pd
at
es
 (
lo
g)

cargo
cpan
cran

npm
nuget

packagist
rubygems

Fastest growth for npm
Slowest growth for CRAN

2012 2013 2014 2015 2016 2017
0

50

100

150

200

250

300

350

400
cargo
cpan
cran
npm
nuget
packagist
rubygems

Increasing level of reuse

• Highly connected network, containing 60% to 80% of all packages
• Power law behavior: A stable minority (20%) of required packages

collect over 80% of all reverse dependencies

Reusability index: Maximal value n such that there exist n
required packages having at least n dependent packages.

Fastest growth for npm

High number of deep
transitive dependencies

• Fragile packages may have a very high transitive impact

• Over 50% of top-level packages have a deep dependency graph

2012 2013 2014 2015 2016 2017
0

50

100

150

200

250

300

nu
m
be
r o

f p
ac
ka
ge
s

cargo
cpan
cran
npm
nuget
packagist
rubygems

Number of packages that are transitively
required by at least 5% of all packages.

1 2 3 4 5 6+
0.0

0.1

0.2

0.3

0.4

0.5

p
ro
p
o
rt
io
n
 o
f
to
p
­l
e
ve
l p
a
ck
a
g
e
s

cargo

1 2 3 4 5 6+

cpan

1 2 3 4 5 6+

cran

1 2 3 4 5 6+

npm

1 2 3 4 5 6+

nuget

1 2 3 4 5 6+

packagist

1 2 3 4 5 6+

rubygems

Transitive dependency depth
of top-level packages

Outdated
Dependencies

Should package maintainers upgrade their
dependencies to more recent versions?

😀 Upgrades benefit from bug and security fixes

😀 Upgrading allows to use new features

😢 Upgrading requires effort

😢 Upgrading may introduce breaking changes

OutdatedUp-to-date

Outdated runtime dependencies in npm

Outdated Dependencies

https://

Outdatedness is related to the type of dependency constraint being used

Strict (i.e. pinned) constraints represent
about 33% of all outdated dependencies

Technical Lag

Technical lag measures how outdated a package or dependency is
w.r.t. the “ideal” situation
where “ideal” = “most recent”; “most secure”; ”least bugs”; “most compatible”; …

A Zerouali et al (Feb. 2019) A formal framework for measuring technical lag in component
repositories – and its application to npm. Wiley Journal on Software Evolution and Process

~

2.7.0 - 22-09-2017 2.0.1 - 16-05-2017

Technical Lag

Technical lag measures how outdated a package or dependency is
w.r.t. the “ideal” situation
where “ideal” = “most recent”; “most secure”; ”least bugs”; “most compatible”; …

Need for dependency
monitoring tools

Example: David Dependency Manager for npm projects

https://david-dm.orgMy npm Project

https://david-dm.org/

Avoiding breaking changes
through Semantic Versioning

https://chaoss.community

Is semantic versioning respected by software package distributions?

What do package dependencies tell us about semantic versioning?
A Decan, T Mens (May 2019) IEEE Transactions on Software Engineering

major minor patch
3 9 2

Breaking
changes

Backwards
compatible

changes
Bug fixes

Most
permissive

Most
Restrictive

Semantic versioning

Different package managers interpret version constraints in different ways:

More restrictive than semver

More permissive than semver

Semantic versioning

• Cargo, npm and Packagist are mostly semver-compliant.
All three are more permissive than semver for 0.y.z versions

• All considered ecosystems become more compliant over
time.

• >16% of restrictive constraints in npm, Packagist and
Rubygems
è prevents adoption of backward compatible upgrades

Security vulnerabilities
OWASP Foundation Top 10 Application Security Risks

You are likely vulnerable:

• If you do not know the versions of all components you use … This includes
components you directly use as well as nested dependencies.

• If software is vulnerable, unsupported, or out of date. This includes the OS,
web/application server, database management system (DBMS), applications, APIs
and all components, runtime environments, and libraries.

• If you do not scan for vulnerabilities regularly and subscribe to security bulletins
related to the components you use.

• If you do not fix or upgrade the underlying platform, frameworks, and dependencies in
a risk-based, timely fashion. This commonly happens in environments when patching
is a monthly or quarterly task under change control, which leaves organizations open
to many days or months of unnecessary exposure to fixed vulnerabilities.

• If software developers do not test the compatibility of updated, upgraded, or patched
libraries.

A9 - Using Components with Known Vulnerabilities

Security vulnerabilities in npm

On the impact of security vulnerabilities in the npm package dependency network.
A Decan, T Mens, E Constantinou (2018) Int’l Conf. Mining Software Repositories

Vulnerable packages
vulnerabilities 399

vulnerable packages 269
releases of vulnerable packages 14,931
vulnerable releases 6,752 (45%)
dependent packages 133,602
dependent packages affected by the
vulnerable packages

72,470 (54%)

Security vulnerabilities in npm
When are vulnerabilities discovered?

>40% of all vulnerabilities are not discovered even 2.5
years after their introduction, regardless of their severity.

Security vulnerabilities in npm
When are vulnerabilities fixed?

~20% of vulnerabilities take more than 1 year to be fixed.

Security vulnerabilities in npm
When are vulnerabilities fixed in
dependent packages?

Vulnerable packages
vulnerable packages 269
releases of vulnerable packages 14,931
vulnerable releases 6,752
dependent packages 133,602
dependent packages affected by the vulnerable packages 72,470

>33% of all affected dependents are not (yet) fixed!

Security vulnerabilities in npm
Why do vulnerabilities remain unfixed
in dependent packages?

Improper or too restrictive use of dependency
constraints

Maintainers are unaware of the
vulnerability or how to fix it

Fixed version of the dependency contains
incompatible changes

Package is no longer actively maintained

Tool support: Monitor and update
vulnerable dependencies

GitHub
Automated security alerts and updates
https://help.github.com/en/github/managing-security-vulnerabilities

Snyk
Continuously find and fix known vulnerabilities in a package’s dependencies
https://snyk.io

Retire.js
Scans for the use of JavaScript libraries with known vulnerabilities
http://retirejs.github.io/retire.js/

OWASP Dependency-Check
Detects publicly disclosed vulnerabilities contained within a project’s dependencies.
https://github.com/jeremylong/DependencyCheck

Eclipse Steady
Detects known vulnerabilitis in dependencies to open source Java and Python components through
combination of static and dynamic analysis techniques
https://eclipse.github.io/steady/

https://help.github.com/en/github/managing-security-vulnerabilities
https://snyk.io/
http://retirejs.github.io/retire.js/
https://github.com/jeremylong/DependencyCheck
https://eclipse.github.io/steady/

Conclusion

• Package dependency networks are affected my multiple
dependency issues

• Many and deep transitive dependencies
• Outdated dependencies
• Breaking changes
• Vulnerable dependencies

• Automated tools and policies can help mitigating these
issues

• Measuring, monitoring and updating outdated and vulnerable
dependencies

• Supporting semantic versioning
• Supporting transitive dependencies
• Detecting vulnerabilities that matter

(avoid false positives/negatives)

