~ = Microsoft

FOSDEM 2020
The Confidential Consortium Framework

Amaury Chamayou
4

0 °
0 °
o 0



CCF: Multi-party applications

& Verifiable consortium governance

Fine-grained confidentiality
Simple programming model

High availability

®
©
D
" 4

High efficiency



CCF: Multi-party applications

® « Endorse
-‘- Govern

/ Members ’ Upgrade

Provision

Operator



A network of Trusted Execution Environments



Trusted Execution Environments

- Encrypted and integrity-protected memory

Distributed
- Cryptographic evidence over running code Trusted

Computation
- Remote attestation



Node Overview

CCF Node

-

SGX Enclave

User Application

TLS terminates in Enclave
Host untrusted
Enclave contains:
« Application
Logic/State
* Governance

* Fault Tolerance



Host-enclave communication

« TCP traffic forwarded via RingBuffers
« Heartbeats over RingBuffers

TCP traffic with « Setup via Ecall, no Ecalls/Ocalls later

 Clients
e Other nodes

Initial setup (Ecall)

Host

Enclave




Join protocol
Adding a node to a CCF network

« Node

Create key pair

Send enclave quote to network

Platform
Code
|dentity

« Network —Governance

Endorse identity
Send data secrets

« Node

Part of network
Catch up on state



Programmable, verifiable Governance



Governance

« Consortium of members
endorse initial ledger and configuration

- Stage votes

Membership

Users

Network Configuration
Code

Constitution

« Voting proposal are scripts
« Votes are scripts too!



Constitution sample

tables, calls, votes = ...
member_votes = 0

for member, vote in pairs(votes) do
if vote then
member_votes = member_votes + 1
end
end

-- count active members
members_active = 0

tables["ccf.members"]:foreach(function(member, details)
if details["status"] == STATE_ACTIVE then
members_active = members_active + 1
end
end)

-- check for raw_puts to sensitive tables
SENSITIVE _TABLES = {"ccf.whitelists", "ccf.gov_scripts"}
for , call in pairs(calls) do
if call.func == "raw_puts" then
for _, sensitive table in pairs(SENSITIVE TABLES) do
if call.args[sensitive table] then
-- require unanimity
return member_ votes == members_active
end
end
end
end

-- a majority of members can pass votes

if member_votes > math.floor(members active / 2) then
return true

end

return false



Proposal and Vote samples

@ tables, node_id = ...
MR .turn Calls:call(“new user", user_cert)

I”“”H tables, code_digest = e
return Calls:call(“new_code", code digest)

@ tables, changes = ...
return (#changes == 1 and
changes[1l].func == “new_code” and
changes[1].args[1] == NEW _CODE DIGEST)



Code update

Member vote to add new supported code version

Members vote for new configuration

Add new nodes
Retire old nodes

Members vote to remove old code version
Constitution rules determines vote outcome



Recovery

« On loss of > f nodes
 Back to original root of trust: members

Key shares
« New service

From old ledger
Endorsed by old ledger



Verifiability

« Governance state is public

« Governance transactions are signed

- Same total order as other transactions
« Tamper-proof ledger



A simple programming model



Data in CCF is...

« Encrypted at rest

In the ledger

« Encrypted in motion

On the wire during replication

« Encrypted during computation

Enclave memory is encrypted during execution



Host

CCF Enclave Client frames

TLS

Serialized RPC

Authenticate Frontend

Key-Value Store

w

Consensus Sign BRIVERERIGE

Read/Write
Transaction

Application Engine

- Encrypted TCP frames in and out
- All application state in Key-Value store

- Append-only ledger

Consensus
frames

Ledger
entries



Consensus

« Deterministic commit

« Crash-fault tolerance

In-enclave Raft variant

Robust to f out of 2f + 1 failures

Enables blaming compromised nodes

Relies on TEE for confidentiality and integrity

« Byzantine fault tolerance

In-enclave PBFT variant, work in progress

Robust to f out of 3f+ 7 simultaneous malicious nodes
Relies on TEE for confidentiality



Key-value Store

« Key-Value Maps
« get(key)
put(key, value)

« Transactions
Strict serializability
Opacity
« App-driven confidentiality

Arbitrary reveal

« Code In Store
Scripting runtimes



Transaction receipts

Merkle Tree paths
Self-veritying

Signed by service
Offline proof/verification



CCF Apps can be written in...

« Native
C++

« Runtimes with code stored in KV
Lua

EVM languages (Solidity...)
JavaScript/ES2015



= Microsoft

The Confidential Consortium Framework

aithub.com/microsoft/CCF



https://github.com/microsoft/CCF/

