@ @ Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0/

OpenStreetMap (OSM) is a collaborative project to create a free
editable map of the world

Database of all the features found on the surface (and below) of
planet Earth.

The Earth is big, so the database is big: ~1.2TB

Looks like a perfect case for Apache Spark

Spark™
Apache Spark is an open-source distributed general-purpose

cluster-computing framework

In-memory processing with automatic data partitioning and
sharding

e Virtually unlimited in RAM and CPU cores.
e Designed to process huge amounts of data effectively

- By ‘huge’ we mean - more data that you can usually fit to
RAM.

1. Loading from external
database

The simplest way to use your data
Is to import OSM database into
PostGIS or Osmosis database and
load geometries using JDBC
datasource.

Pros:

e FEverything is already
implemented

e Filtering of geometry on the
database side

Cons:

e Extremely long import process
e Need to maintain external
DB,import process etc

2. Converting to format
understood by Spark

With Magellan extension Apache
spark can read geometries in
GeoJSON or WKB formats.

Pros:

e FEverything is already
implemented

Cons:

e Even slower preparation
process, that also needs to be
maintained

e No filtering on load

3. Load OSM data directly to
Spark

Directly load OSM database as
Spark Dataframe.

Pros:

e Simplest way to get the data,
no external dependencies

e Partial filtering support on
load

Cons:

e | had to code it myself :(

OSM data consists of 3 types of entities:

o Nodes with coordinates

o Ways referring to the nodes

o Relations referring to the nodes and ways
Typical OSM data file is sorted in the way, that it
stores nodes first, then ways, then relations.

Due to the size of the OSM database you are forcec
to process it sequentially, as you can’t fit it in to you
RAM.

But with Apache Spark you actually can store the
whole planet in the cluster, so you don’t care about
sequentiality anymore and can read OSM file in
random multithreaded manner

Data model

The solution #1: parallelpbf

OSM PBF format multithreaded reader written in Java 8.
Supports all current OSM PBF features and options
Available under GPLv3 at https://aithub.com/woltapp/parallelpbf and Maven
com.wolt.osm:parallelpbf:0.2.0
e FEasy to use, callback based API:

InputStream input = Thread.currentThread () .getContextClassLoader () .getResourceAsStream("sample.pbf");
new ParallelBinaryParser (input, 36)

.onHeader (this: :processHeader)

.onBoundBox (this: :processBoundingBox)
.onComplete (this::printOnCompletions)
.onNode (this: :processNodes)

.onWay (this::processWays)
.onRelation(this: :processRelations)
.onChangeset (this: :processChangesets)

.parse();

e Skips reading of entities without callback set.

https://github.com/woltapp/parallelpbf

parallelpbf performance improvements

e Test format: reading OSM files and counting ‘fixme’ tags for each entity type
e Comparing Osmosis library reader and parallelpbf
e Running on cbd.9xlarge instance with 36 cores and local SSD

Osmosis vs Parallelpbf(36 threads)

e Belgium, 0.35GB file B Osmosis [Parallelpbf(36 threads)
o 18 seconds osmosis reader
o 7 seconds 36 threads

2500

e (Czech Republic, 0.7GB file 2000
o 34 seconds osmosis reader
o 11 seconds 36 threads 1500

e Asia, 7.7GB file
o 431 seconds single thread
o 104 seconds 36 threads

e FEurope, 21GB file

1000

500

o 1024 seconds single thread 0
o) 224 seconds 36 threads Belgium 0.35GB Czech republic Asia 7.3 GB Europe 21 GB Planet 47GB
0.7GB
e Planet, 49GB file
o 2194 seconds single thread Region

o 864 seconds 36 threads

e Parallelpbf reader will only be executed on a single Spark
cluster node (master node) and all other executors nodes will
be waiting for it

e [he dataset have to fit master node RAM

e Dataframe creation will redistribute data from master node to
executor nodes, causing unneeded data moves.

OSM PBF format Spark datasource, built on top of parallelpbf
Supports Scala 2.11 and 2.12, will support 2.13 when Spark will catch up.

e Available under GPLv3 at https://github.com/woltapp/spark-osm-datasource

and Maven com.wolt.osm:spark-osm-datasource:0.3.0

Supports partitioning, thus loading partitions of OSM file in parallel on all
executors.

Supports Spark local file distribution mechanism, to save time on S3 transfer
Supports partial filtering

Running same tags counter as for parallelpbf on a planet file with cluster of
/20 cores and 1440GB of Ram takes only 2.5 minutes

https://github.com/woltapp/spark-osm-datasource

val osm = spark.read
.option ("threads", 6)
.option("partitions", 32)
.format (OsmSource.0OSM SOURCE NAME)
.load (HADOOP URL) .drop ("INFO")

val counted = osm.filter (col ("TAG") ("fixme") .isNotNull) .groupBy ("TYPE") .count () .collect ()

Any Hadoop accessible file is supported, like local files, HDFS, S3, etc

With ‘uselocalFile’ option you can use Spark built-in file distribution mechanism, saving time on
retrieving file from external source several times

Number of threads specifies, how many threads each Spark executor should use for loading it’s
assigned partitions

Instead of guessing input file size or hardcoding some specific number of partitions, you can explicitly
specify, how OSM file should be splitted.

Collections of useful Spark snippets for processing OSM data

Supports Scala 2.11 and 2.12, will support 2.13 when Spark will catch up.
Still work in progress

Available under Apache 2.0 at https://aithub.com/woltapp/spark-osm-tools, but
not published to the Maven Central yet.

Includes procedures for merging OSM datasets, limiting/extracting by some
polygon boundary, relation hierarchy processing

Ways to geometry conversion

Multipolygon solver

Writer to the Osmosis format database

Even a simple renderer!

https://github.com/woltapp/spark-osm-tools

Using it all together: public transport coverage for a city

e [he goalis to analyze public transport coverage

e [or each building (starting line) distance to a nearest public
transport platform should be calculated.

e Buildings should be color coded with that distance

ee

Load the map:

val osm = spark.read
.option("threads", 2).option("partitions", 12).format(OsmSource. OSM_SOURCE_NAME)
Joad("belgium-latest.osm.pbf").drop("INFO")

Build city boundaries polygon and extract city from the loaded data:

val brBoundary = osm filter(col("TYPE") === OsmEntity.RELATION)

filter(lower(col("TAG")("boundary")) === "administrative" && col("TAG")("admin_level") === "4" && col("TAG")("ref:INS") === "04000") //Brussels
val brPolygon = ResolveMultipolygon(brBoundary, osm).select("geometry").first().getAs[Seq[Seq[Double]]]("geometry")

val area = Extract(osm, brPolygon, Extract. CompleteRelations, spark)

Find locations of all public transport stops:

val stop_positions = area filter(col("TYPE") === OsmEntity.NODE) filter(lower(col("TAG")("public_transport")) === "stop_position").select("LON", "LAT")
.collect().map(row => (row.getAs[Double]("LON"), row.getAs[Double] ("LAT")))

Get building geometry
val way_buildings = area filter(col("TYPE") === OsmEntity. WAY) filter(lower(col("TAG")("building")).isNotNull)

.select("WAY") filter(size(col("WAY")) > 2) filter(col("WAY")(0) === col("WAY")(size(col("WAY")) - 1))
val buildingsGeometry = WayGeometry(way_buildings, area).drop("WAY")

e Do the actual analysis

o Find buildings mean points
val meanPointUdf = udf{(geometry: Seq[Seq[Double]]) => {

val lon = geometry.map(_.head).sum / geometry.size.toDouble
val lat = geometry.map(_.last).sum / geometry.size.toDouble
Seq(lon, lat)

1
val buildingsMeanPoints = buildingsGeometry.withColumn("MEAN_POINT", meanPointUdf(col("geometry")))

o Find distance to the nearest public transport platform

val distanceUdf = udf { (lon: Double, lat: Double) => stop_positions.map(position => haversine(lon, lat, position._1, position._2)).min }
val buildingsWithDistances = buildingsMeanPoints.withColumn("DISTANCE", distanceUdf(col("MEAN_POINT")(0), col("MEAN_POINT")(1)))
.drop("MEAN_POINT")

e Finally mark building for rendering and render them:
val distanceToRenderParametersUdf = udf(distanceToRenderParameters _) //Here colors are assigned
val symbolized = buildingsW ithDistances.withColumn("symbolizer", lit("Polygon")) /Render buildings as polygons
withColumn("minZoom", lit(13)) /Render only at zoom levels starting from 13
withColumn("parameters", distanceToRenderParametersUdf(col("DISTANCE")))

Renderer(symbolized, 13 to 19, "/home/chollya/tiles/public_transport_coverage")

Public transport coverage for a city: results

e Brussels have good public transport coverage:

L O, J
\\r;\e‘ﬁééﬁ- 3

15

public transport coverage for a city: results

e Thereis no way to distin

e

guish residential buildin

i R

gs from other build
. 33002 TR Tl

lon - Klei

iy a0yl ry

1y any”

1s5ap:

16

parallelpbf

spark-osm-datasource

a.
b.

Better filtering during load
Geometry conversion on load(?)

spark-osm-tools

a.

b
C.
d

Relations solver for different types of relations

GraphX support for relations hierarchy/polygons hierarchy
Geometry conversion/operations

Interoperation with GeoSpark/Magellan

-3 x". .
-
P

:}"

y

https://aithub.com/woltapp/parallelpbf

https://aithub.com/woltapp/spark-osm-datasource
https://github.com/woltapp/spark-osm-datasource
denis.chaplygin@wolt.com https://github.com/akashihi
https://wolt.com/

https://github.com/woltapp/parallelpbf
https://github.com/woltapp/spark-osm-datasource
https://github.com/woltapp/spark-osm-datasource
mailto:denis.chaplygin@wolt.com
https://github.com/akashihi
https://wolt.com/

