
Apache spark on planet scale
Denis Chaplygin
Software engineer @ Wolt

Jan 2020

This presentation is licensed under a Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0/

● OpenStreetMap (OSM) is a collaborative project to create a free
editable map of the world

● Database of all the features found on the surface (and below) of
planet Earth.

● The Earth is big, so the database is big: ~1.2TB
● Looks like a perfect case for Apache Spark

2

OpenStreetMap

● Apache Spark is an open-source distributed general-purpose
cluster-computing framework

● In-memory processing with automatic data partitioning and
sharding

● Virtually unlimited in RAM and CPU cores.
● Designed to process huge amounts of data effectively

○ By ‘huge’ we mean - more data that you can usually fit to
RAM.

3

Apache Spark

Using OSM data in Apache Spark

4

1. Loading from external
database

The simplest way to use your data
is to import OSM database into
PostGIS or Osmosis database and
load geometries using JDBC
datasource.
Pros:
● Everything is already

implemented
● Filtering of geometry on the

database side
Cons:
● Extremely long import process
● Need to maintain external

DB,import process etc

3. Load OSM data directly to
Spark
Directly load OSM database as
Spark Dataframe.

Pros:
● Simplest way to get the data,

no external dependencies
● Partial filtering support on

load
Cons:
● I had to code it myself :(

2. Converting to format
understood by Spark
With Magellan extension Apache
spark can read geometries in
GeoJSON or WKB formats.

Pros:
● Everything is already

implemented
Cons:
● Even slower preparation

process, that also needs to be
maintained

● No filtering on load

● OSM data consists of 3 types of entities:
○ Nodes with coordinates
○ Ways referring to the nodes
○ Relations referring to the nodes and ways

● Typical OSM data file is sorted in the way, that it
stores nodes first, then ways, then relations.

● Due to the size of the OSM database you are forced
to process it sequentially, as you can’t fit it in to you
RAM.

● But with Apache Spark you actually can store the
whole planet in the cluster, so you don’t care about
sequentiality anymore and can read OSM file in
random multithreaded manner

5

The problem #1 with OSM data

● OSM PBF format multithreaded reader written in Java 8.
● Supports all current OSM PBF features and options
● Available under GPLv3 at https://github.com/woltapp/parallelpbf and Maven

com.wolt.osm:parallelpbf:0.2.0
● Easy to use, callback based API:

InputStream input = Thread.currentThread().getContextClassLoader().getResourceAsStream("sample.pbf");

 new ParallelBinaryParser(input, 36)

 .onHeader(this::processHeader)

 .onBoundBox(this::processBoundingBox)

 .onComplete(this::printOnCompletions)

 .onNode(this::processNodes)

 .onWay(this::processWays)

 .onRelation(this::processRelations)

 .onChangeset(this::processChangesets)

 .parse();

● Skips reading of entities without callback set.

6

The solution #1: parallelpbf

https://github.com/woltapp/parallelpbf

● Test format: reading OSM files and counting ‘fixme’ tags for each entity type
● Comparing Osmosis library reader and parallelpbf
● Running on c5d.9xlarge instance with 36 cores and local SSD

7

parallelpbf performance improvements

● Belgium, 0.35GB file
○ 18 seconds osmosis reader
○ 7 seconds 36 threads

● Czech Republic, 0.7GB file
○ 34 seconds osmosis reader
○ 11 seconds 36 threads

● Asia, 7.7GB file
○ 431 seconds single thread
○ 104 seconds 36 threads

● Europe, 21GB file
○ 1024 seconds single thread
○ 224 seconds 36 threads

● Planet, 49GB file
○ 2194 seconds single thread
○ 864 seconds 36 threads

● Parallelpbf reader will only be executed on a single Spark
cluster node (master node) and all other executors nodes will
be waiting for it

● The dataset have to fit master node RAM
● Dataframe creation will redistribute data from master node to

executor nodes, causing unneeded data moves.

8

The problem #2 with OSM data and parallelpbf

● OSM PBF format Spark datasource, built on top of parallelpbf
● Supports Scala 2.11 and 2.12, will support 2.13 when Spark will catch up.
● Available under GPLv3 at https://github.com/woltapp/spark-osm-datasource

and Maven com.wolt.osm:spark-osm-datasource:0.3.0
● Supports partitioning, thus loading partitions of OSM file in parallel on all

executors.
● Supports Spark local file distribution mechanism, to save time on S3 transfer
● Supports partial filtering
● Running same tags counter as for parallelpbf on a planet file with cluster of

720 cores and 1440GB of Ram takes only 2.5 minutes

9

The solution #2: spark-osm-datasource

https://github.com/woltapp/spark-osm-datasource

 val osm = spark.read

 .option("threads", 6)

 .option("partitions", 32)

 .format(OsmSource.OSM_SOURCE_NAME)

 .load(HADOOP_URL).drop("INFO")

 val counted = osm.filter(col("TAG")("fixme").isNotNull).groupBy("TYPE").count().collect()

10

Spark osm datasource example

● Any Hadoop accessible file is supported, like local files, HDFS, S3, etc
● With ‘useLocalFile’ option you can use Spark built-in file distribution mechanism, saving time on

retrieving file from external source several times
● Number of threads specifies, how many threads each Spark executor should use for loading it’s

assigned partitions
● Instead of guessing input file size or hardcoding some specific number of partitions, you can explicitly

specify, how OSM file should be splitted.

● Collections of useful Spark snippets for processing OSM data
● Supports Scala 2.11 and 2.12, will support 2.13 when Spark will catch up.
● Still work in progress
● Available under Apache 2.0 at https://github.com/woltapp/spark-osm-tools, but

not published to the Maven Central yet.
● Includes procedures for merging OSM datasets, limiting/extracting by some

polygon boundary, relation hierarchy processing
● Ways to geometry conversion
● Multipolygon solver
● Writer to the Osmosis format database
● Even a simple renderer!

11

Making you life easier: spark-osm-tools

https://github.com/woltapp/spark-osm-tools

● The goal is to analyze public transport coverage
● For each building (starting line) distance to a nearest public

transport platform should be calculated.
● Buildings should be color coded with that distance

12

Using it all together: public transport coverage for a city

Image by Clker-Free-Vector-Images (pixabay.com)

● Load the map:
 val osm = spark.read

 .option("threads", 2).option("partitions", 12).format(OsmSource.OSM_SOURCE_NAME)

 .load("belgium-latest.osm.pbf").drop("INFO")

● Build city boundaries polygon and extract city from the loaded data:
 val brBoundary = osm.filter(col("TYPE") === OsmEntity.RELATION)

 .filter(lower(col("TAG")("boundary")) === "administrative" && col("TAG")("admin_level") === "4" && col("TAG")("ref:INS") === "04000") //Brussels

 val brPolygon = ResolveMultipolygon(brBoundary, osm).select("geometry").first().getAs[Seq[Seq[Double]]]("geometry")

 val area = Extract(osm, brPolygon, Extract.CompleteRelations, spark)

● Find locations of all public transport stops:
val stop_positions = area.filter(col("TYPE") === OsmEntity.NODE).filter(lower(col("TAG")("public_transport")) === "stop_position").select("LON", "LAT")

 .collect().map(row => (row.getAs[Double]("LON"), row.getAs[Double]("LAT")))

● Get building geometry
 val way_buildings = area.filter(col("TYPE") === OsmEntity.WAY).filter(lower(col("TAG")("building")).isNotNull)

 .select("WAY").filter(size(col("WAY")) > 2).filter(col("WAY")(0) === col("WAY")(size(col("WAY")) - 1))

 val buildingsGeometry = WayGeometry(way_buildings, area).drop("WAY")

13

public transport coverage for a city cont’d

● Do the actual analysis
○ Find buildings mean points

 val meanPointUdf = udf{(geometry: Seq[Seq[Double]]) => {

 val lon = geometry.map(_.head).sum / geometry.size.toDouble

 val lat = geometry.map(_.last).sum / geometry.size.toDouble

 Seq(lon, lat)

 }}

 val buildingsMeanPoints = buildingsGeometry.withColumn("MEAN_POINT", meanPointUdf(col("geometry")))

○ Find distance to the nearest public transport platform
 val distanceUdf = udf { (lon: Double, lat: Double) => stop_positions.map(position => haversine(lon, lat, position._1, position._2)).min }

 val buildingsWithDistances = buildingsMeanPoints.withColumn("DISTANCE", distanceUdf(col("MEAN_POINT")(0), col("MEAN_POINT")(1)))

 .drop("MEAN_POINT")

● Finally mark building for rendering and render them:
 val distanceToRenderParametersUdf = udf(distanceToRenderParameters _) //Here colors are assigned

 val symbolized = buildingsWithDistances.withColumn("symbolizer", lit("Polygon")) //Render buildings as polygons

 .withColumn("minZoom", lit(13)) //Render only at zoom levels starting from 13

 .withColumn("parameters", distanceToRenderParametersUdf(col("DISTANCE")))

 Renderer(symbolized, 13 to 19, "/home/chollya/tiles/public_transport_coverage")

14

public transport coverage for a city cont’d

● Brussels have good public transport coverage:

15

Public transport coverage for a city: results

● There is no way to distinguish residential buildings from other building, like RUIAN in Czech republic

16

public transport coverage for a city: results

More exciting stuff is coming

● parallelpbf
a. (Unordered) writing support

● spark-osm-datasource
a. Better filtering during load
b. Geometry conversion on load(?)

● spark-osm-tools
a. Relations solver for different types of relations
b. GraphX support for relations hierarchy/polygons hierarchy
c. Geometry conversion/operations
d. Interoperation with GeoSpark/Magellan

17

parallelpbf: https://github.com/woltapp/parallelpbf
osm-spark-datasource: https://github.com/woltapp/spark-osm-datasource
osm-spark-tools: https://github.com/woltapp/spark-osm-datasource
Contact author: denis.chaplygin@wolt.com / https://github.com/akashihi
Order your lunch here: https://wolt.com/

18

Thank you!

https://github.com/woltapp/parallelpbf
https://github.com/woltapp/spark-osm-datasource
https://github.com/woltapp/spark-osm-datasource
mailto:denis.chaplygin@wolt.com
https://github.com/akashihi
https://wolt.com/

19

