
ALTER TABLE
IMPROVEMENTS IN
MARIADB SERVER
Marko Mäkelä
Lead Developer InnoDB
MariaDB Corporation

Generic ALTER TABLE in MySQL & MariaDB

CREATE…; INSERT…SELECT; RENAME…; DROP
● Starting with MySQL 5.6 & MariaDB 10.0, called ALGORITHM=COPY

● Until MySQL 8.0 & MariaDB 10.2, lots of unnecessary undo logging

○ To speed up crash recovery, there was a hack of “commit every 10,000 rows”.

● Copies data one index record at a time, unsorted

History of InnoDB Native ALTER TABLE (1/2)

● InnoDB Plugin for MySQL 5.1: ADD [UNIQUE] INDEX, ADD PRIMARY KEY

○ Pre-sorts all data for each index that is being created

● ALGORITHM=INPLACE starting with MySQL 5.6 and MariaDB 10.0

○ Misleading name “inplace”; some operations may rebuild the table!

■ (ADD|DROP) COLUMN, ADD PRIMARY KEY, CHANGE…[NOT] NULL

○ Some operations are instantaneous: rename column, change DEFAULT, …

○ Sloppily called “online” even when no concurrent DML is allowed or involved

History of InnoDB Native ALTER TABLE (2/2)

● MySQL 5.7 (and MariaDB 10.2) introduced bulk index creation:

○ Build the indexes one leaf page at a time, without redo logging

○ MariaDB introduced innodb_log_optimize_ddl=OFF for backup-friendliness

● Some MySQL 5.6 & 5.7 (MariaDB 10.0 & 10.2) features are half-baked:

○ Native ALTER TABLE refuses to create or rebuild multiple FULLTEXT INDEX

○ Some combinations of operations involving 5.7 (10.2) virtual columns are refused

ALTER ONLINE TABLE

● InnoDB supports two classes of operations in online ALTER TABLE:

○ ADD [UNIQUE] INDEX: create indexes without copying the table

○ online rebuild: ADD PRIMARY KEY or ADD, DROP, MODIFY columns; FORCE

● Not implemented for the bug-ridden FULLTEXT or SPATIAL indexes

○ FULLTEXT INDEX has suffered from hangs and various other issues

○ SPATIAL INDEX can return wrong results due to corruption or race conditions

Instant ALTER with
Existing Data Format

Instant ALTER TABLE Operations in InnoDB

● 5.6 & 10.0: Renaming columns, changing DEFAULT value

● 5.7 & 10.2: Extend VARCHAR in some cases (not crossing 255→256 bytes)

● 10.3: Avoid “surprise rebuilds” by ALGORITHM=(INSTANT|NOCOPY)

● 10.3: Various metadata changes that do not affect the data format

○ DROP CONSTRAINT , enable/disable the SYSTEM VERSIONING of a column, …

● 10.4: CHARSET utf8mb3→utf8mb4, COLLATE (may rebuild indexes)

Extending VARCHAR (or UTF-8 CHAR)

● How MySQL 5.0.3 ROW_FORMAT=COMPACT and its variations encode lengths l:

○ If l<128 or lmax<256: encode l in 1 byte. Else, encode in 2 bytes (MSB set in 1st byte)

○ MariaDB 10.4: Any extension from lmax<128 to lmax>255 is allowed!

○ MariaDB 10.4: Any extension in ROW_FORMAT=REDUNDANT tables is allowed!

● Change of CHARSET will affect the data format if lmax in bytes changes from
[128,255] to more than 255

○ Instead of ALGORITHM=INSTANT , such operation would use ALGORITHM=COPY

File Format Changes
for Instant ALTER

A Word on Compatibility

● Downgrades are usually not tested, and cannot be guaranteed to work.

○ Users (and customers) may want to downgrade, at least between minor versions.

○ We must avoid unnecessary incompatible changes to file formats.

● If you do not use instant ADD/DROP/reorder column, you should be able to
export files from MariaDB 10.3 or 10.4 to earlier versions.

● The changes to the format must be clearly identified, so that an attempt to
import the files into older versions will fail gracefully.

History of Instant ADD COLUMN

● 10.3: ADD COLUMN (as the last column only, with constant DEFAULT value)

○ No format changes to metadata tables; supports IMPORT TABLESPACE

○ Does not support ROW_FORMAT=COMPRESSED .

○ Alibaba and Tencent had something similar in their MySQL 5.6 forks.

○ MySQL 8.0 later introduced a more limited version, storing metadata externally

● MariaDB evaluates the DEFAULT expressions during ALTER TABLE and stores
the values in a hidden metadata record at the start of the clustered index.

Example of Instant ADD COLUMN
CREATE TABLE t(id INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current_timestamp(),
 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox',
 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'));
UPDATE t SET t=NULL WHERE id=3;

id u

1 1

2 2

3 3

Example of Instant ADD COLUMN
CREATE TABLE t(id INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current_timestamp(),
 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox',
 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'));
UPDATE t SET t=NULL WHERE id=3;

id u d t p

2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

1 1 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

2 2 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

3 3 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

Example of Instant ADD COLUMN
CREATE TABLE t(id INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current_timestamp(),
 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox',
 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'));
UPDATE t SET t=NULL WHERE id=3;

id u d t p

2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

1 1 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

2 2 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

3 3 2017-11-10 12:14:00 NULL POINT(0 0)

MariaDB 10.4: Instant DROP & reorder

● After instant DROP COLUMN, we must keep storing dummy (garbage) values.

○ A mapping of columns and clustered index fields is stored in the metadata record.

○ The mapping also enables instant (ADD|CHANGE|MODIFY)…(FIRST|AFTER…).

○ May be refused due to the presence of FULLTEXT INDEX or virtual columns.

● Internally, clustered index fields for added columns are appended to the end.

● The format of secondary indexes remains completely unchanged.

Basic Usage of Instant ALTER TABLE

● By default, ALTER TABLE is instantaneous when possible.

○ Use the FORCE keyword if you want to rebuild the table, with the associated
limitations regarding FULLTEXT INDEX and SPATIAL INDEX .

○ See also https://mariadb.com/resources/blog/instant-add-column-innodb

● To monitor the number of avoided table rebuilds via using the metadata record:
SELECT variable_value
FROM information_schema.global_status
WHERE variable_name = 'innodb_instant_alter_column';

https://mariadb.com/resources/blog/instant-add-column-innodb

Better ALTER TABLE
for Replication and
All Storage Engines

Problems with Online InnoDB Table Rebuild

● Replicas will only start applying ALTER TABLE after the master finished

○ Large tables cause a huge replication lag; the fix MDEV-11675 is targeting 10.5

● Log of concurrent changes must be buffered; the size is hard to predict

○ Written before DML COMMIT; ‘transient’ duplicate key errors cause failures

● Watch out for MDEV-16329 Cross-Engine ALTER ONLINE TABLE

○ Keep engine-native for ADD [UNIQUE] INDEX or ALGORITHM=INSTANT

https://jira.mariadb.org/browse/MDEV-11675
https://jira.mariadb.org/browse/MDEV-16329

Speeding up Bulk Operations in InnoDB

● Planned feature: MDEV-515: InnoDB bulk insert into empty table or partition

○ Speeds up replaying mysqldump and many INSERT, REPLACE, LOAD DATA

○ Works also for generic ALTER TABLE…ALGORITHM=COPY

○ Also for MDEV-16329 Cross-Engine ALTER ONLINE TABLE

● For recovery, just write 1 undo log record “truncate on rollback”

● Build indexes pre-sorted, page by page, like CREATE INDEX does

https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-16329

Theoretical Limits of
Avoiding Copying in
ALTER TABLE

Deferred Conversions and Format Tagging

● Payload format changes can be instantaneous if they relax constraints:

○ Change INT UNSIGNED to BIGINT (unsigned to wider signed integer)

○ Change “anything” to utf8 or utf16; e.g.: _latin1 0xe4 ≙ _utf8 0xc3a4

■ Must validate ascii and ucs2 data due to bugs that allowed invalid data!

● Could be implemented with a per-record or per-page “format version” tag and
by converting records to the newest version whenever the data is being read.

● Affected secondary indexes must be rebuilt.

ALGORITHM=NOCOPY with Validation (1/2)

● Avoid copying, but perform a table scan to validate the data.

○ Hard to avoid locking the entire table; maybe triggers could be involved?

○ ALTER IGNORE TABLE could involve UPDATE of offending data.

● Example: i BIGINT NULL→INT UNSIGNED NOT NULL might be OK

● Affected secondary indexes must be rebuilt if the physical format changes

● ADD CONSTRAINT…(CHECK|FOREIGN KEY) does not change format!

ALGORITHM=NOCOPY with Validation (2/2)

1. Scan the table to validate all rows, e.g., to MODIFY i INT UNSIGNED:

○ ALTER IGNORE would UPDATE offending data, e.g.: SET i=NULL WHERE i<0

2. Execute any DROP INDEX or ADD INDEX

○ Also rebuild any secondary indexes whose format would be affected

3. Execute any additional operations (such as instant DROP COLUMN)

4. Update the data dictionary

Summary

● MariaDB 10.3 and 10.4 changed the data format to allow instantaneous
(ADD|MODIFY) COLUMN…(FIRST|AFTER…), DROP COLUMN.

● ALTER TABLE…FORCE; will request a rebuild in the ‘canonical’ fixed format.

● You can avoid “surprise rebuilds” (unexpected DoS via excessive I/O) by:

○ Specifying ALGORITHM=INSTANT or ALGORITHM=NOCOPY

○ SET alter_algorithm=instant; or SET alter_algorithm=nocopy;

○ If the “efficiency constraint” cannot be fulfilled, the ALTER TABLE will be refused.

MAY 4-6
CONRAD NEW YORK

EARLY BIRD REGISTRATION OPEN:
MARIADB.COM/OPENWORKS

2020

