
FOSDEM 2020
Tracking Performance of a Big
Application from Dev to Ops

Philippe WAROQUIERS

NM/TEC/DAD/TD/NeosClassification: TLP: green

Objectives of Performance Tracking ?

 Evaluate/measure resources needed by new functionalities
 To verify the estimated resource budget (CPU, memory)
 To ensure the new release will cope with the current or expected new

load
 Avoid performance degradation during development e.g.

 Team of 20 developers working 6 months on a new release
 A developer integrates X changes per month

 If one change on X degrades the performance by 1% :
 Optimistic: new release is 2.2 times slower : 100% + (6 months * 20 persons * 1%)
 Pessimistic: new release is 3.3 times slower : 100% * 1.01 ^ (6 * 20)

 => do not wait the end of the release to check performance
 => daily track the performance during development

Developement Performance Tracking Objective:
Reliably Detect Performance Diference of <1%

2

Eurocontrol

 European Organisation for the Safety of Air Navigation
 International organisation with 41 member states
 Several sites/directorates/…
 Activities: operations, concept development, European-wide project

implementation, …
 More info: www.eurocontrol.int

 Directorate Network Management
 Develop and operate the Air Trafc Management network
 Operation phases: strategical, pre-tactical, tactical, post-operation
 Airspace/route data, Flight Plan Processing, Flow/Capacity

Management, …
 NM has 2 core mission/safety critical systems:

 IFPS : fight plan processing
 ETFMS : Flow and Capacity Management

3

IFPS and ETFMS

 Big applications : IFPS+ETFMS is 2.3 million lines of Ada code
 ETFMS Peak day:

 > 37_000 fights
 > 11.6 million radar position, planned to increase to 18 millions Q1

2021
 > 3.3 million queries/day
 > 3.5 million messages published (e.g. via AMQP, AFTN, …)

 ETFMS hardware:
 On-line processing done on a linux server, 28 cores
 Some workstations running a GUI also do some batch/background jobs

 Many heavy queries, complex algorithms , called a lot, e.g.
 Count/fight list e.g. “fights traversing France between 10:00 and

20:00”
 Lateral route prediction or route proposal/optimisation
 Vertical trajectory calculation
 …

4

Horizontal Trajectory

5

Vertical Trajectory

6

Performance needs and ETFMS scalability

 Horizontal scalability : OPS confguration
 10 high priority server processes handle the critical input (e.g. fight

plan, radar position, external user queries, …)
 9 lower priority server processes (each 4 threads) handle lower priority

queries e.g. “fnd a better route for fight AFR123”
 Up to 20 processes running on workstations, executing batch jobs or

background queries e.g. “every hour, search a better route for all fights
of aircraft operator BAW departing in the next 3 hours”

 Vertical scalability, needed e.g. for “simulation”:
 Simulate/evaluate heavy actions on the whole of European data

such as: “close an airspace/country and spread/reroute/delay the
trafc”

 Starting a simulation implies e.g. to
 clone the whole trafc from the server to the workstation
 re-create in-memory indexes (~20_000_000 entries)

 Time to start a simulation: < 4 seconds (muti-threaded)
 1 task decodes the fight data from the server, 1 task creates the fight data

structure, 6 tasks are re-creating the indexes

7

Track Performance during Dev:
“Performance Unit Tests”

 “Performance unit tests”: useful to measure e.g.
 Basic data structures: hash tables, binary trees, …

 Low level primitives: pthread mutex, Ada protected objects, …

 Low level libraries performance e.g. malloc library
 Performance Unit tests are usually small/fast

 and reproducible/precise (remember our 1% objective)

8

Pitfalls of “Performance Unit Tests”
A real life example with malloc

 Malloc Performance Unit Test: glibc malloc <> tcmalloc <> jemalloc
 7 years ago: switched from glibc to tcmalloc : less fragmentation,

faster
 But parallelised ‘start simulation’ had not understandable 25% perf

variation
 Performance was varying depending on linking a little bit more (or less) not

called code in the executable.
 Analysis with ‘valgrind/callgrind’ : no diference. Analysis with ‘perf’: shows

tcmalloc slow path called a lot more
 => malloc perf unit test: N tasks doing M million malloc, then M million

free
 glibc was slower but consistent performance
 jemalloc was signifcantly faster than tcmalloc
 But the ‘real start simul’ was slower with jemalloc

 => more work needed on the unit test

9

Pitfalls of “Performance Unit Tests”
A real life example with malloc

 After improving unit test to better refect ‘start simulation’ work:
 tcmalloc was slower with many threads

but became faster when doing L loops of ‘start/stop simulation’
 With jemalloc, doing the M millions free in the main task was slower
 Unit test does not yet evaluate fragmentation

 Based on the above, we obtained a clear conclusion about malloc:
 We cannot conclude from the malloc “Performance Unit Test“
 => currently keeping tcmalloc, re-evaluate with newer glibc in RHEL 8

10

Pitfalls of Performance “Unit Tests”

 Difcult to have a Performance unit test representative of the real
load
 Malloc: no conclusion
 pthread_mutex timing: measure with or without contention ?

 And is the real load causing a lot of contention ?
 Hash tables, binary trees, …:

 Real load behavior depends on the key types/hash functions/compare
functions/distribution of key values/...

 If difcult for low level algorithms, what about complex algorithms:
 E.g. have a representative ‘trajectory calculation performance unit

test’ ?
 With which data (nr of airports, routes, airspaces, …) ?
 With what fights (short haul ? long haul) fying where ?

 Performance unit tests are (somewhat) useful but largely
insufcient

 => Solution: measure/track performance with the full system and
real data : ‘Replay one day of Operational Data’

11

Replay Operational Data

 The operational system records all the external input:
 Messages modifying the state of the system,

e.g. fight plans, radar positions, …
 Query messages, e.g. “Flight list entering France between 10:00 and

12:00”
 ETFMS Replay tool can replay the input data

 New release must be able to replay (somewhat recent) old input format
 Some difculties:

 Several days of input are needed to replay one day
 E.g. because a fight plan for the D day can be fled some days in advance

 Elapsed time needed to replay several days of operational data?
 Hardware needed to replay the full operational data ?
 How to have a (sufciently) deterministic replay in a multi-process

system ?
 (to detect diference of <1%)

12

Replay Operational Data
Volume of Data to Replay

 Replaying the full operational input is too heavy
 => Compromise:

 Replay the full data that changes the state of the system
 Flight plans, radar positions, …

 Replay only a part of the query load:
 Replay only one hour of the query load

 And only a subset of the background/batch jobs

 Replaying in real time mode is too slow
 But an input must be replayed at the time it was received on ops !
 Many actions happen on timer events

 => “accelerated fast time replay mode” :
 The replay tool controls the clock value
 Clock value “jumps” over the time periods with no input/no event

 Fast time mode: replaying one day takes about 13 hours on a (fast)
linux workstation

13

Replay Operational Data
Sources of non Deterministic Results

 Network, NFS, ….
 Replay on isolated workstations: local fle system, local database, ...

 System Administrators
 Are open to discussions to disable their jobs on replay workstations

 Security Ofcers
 Are (somewhat) open to (difcult) discussions to disable security scans

:)
 Input/Output past history

 Removing fles and clearing the database was not good enough
 => completely recreate the fle system and database for each replay

 Operating System usage history
 => Reboot the workstation before each replay

14

Replay Operational Data
Remaining Sources of non Deterministic Results

 Time-control replay tool serialises “most” of input processing
 “most” but not all: serialising everything slows down the replay

 E.g. radar positions at the same second are replayed “in parallel”

 Replays are done on identical workstations
 Same hw, same operating system, …
 Still observing systematic small performance diference between

workstations

 We fnally achieved a reasonably deterministic replay performance,
with 3 levels of results:
 Global tracking: elapsed/user/system cpu for complete system
 Per process tracking: user/system cpu, “perf stat” results, …
 Detailed tracking: we run one hour of replay under valgrind/callgrind

 This is very slow (26 hours) but very precise

15

Replay Operational Data
Global Tracking

16

Replay Operational Data
Per Process Tracking

 User and system cpu
 heap status : used/free, tcmalloc details, …
 …

17

Replay Operational Data
Detailed Tracking with valgrind/callgrind/kcachegrind

18

Dev Performance Tracking:
Detection of a real life missed failed optimisation

19

Performance tracking detected this was a
pessimisation: the compiler optimises the ‘no body’
rendez-vous, and the nr of Unlock calls is
signifcantly bigger than the nr of Get_Lock_Count
calls

This should be faster: we will have the
same number of Unlock rendez-vous
but we will have much faster
Get_Lock_Count calls.

Optimisation idea: decrease the
number of rendez-vous by using lower
level synchronisation based on
Volatile

Dev Performance Tracking:
A Summary

 We have a good dev performance tracking, using a mix of:
 Performance Unit Tests
 Replay Operational Data in a as deterministic as possible setup

 The replayed day is changed ~every year to match new usage patterns
 Various tools : valgrind/callgrind + kcachegrind, perf, top, …
 Beware of blind spots of your tools e.g.

 Valgrind/callgrind + kcachegrind is very easy to use but
 very slow and serialises multi-thread applications
 Limited system call measurement can be misleading

 Have global indicators, zoom on the details when needed

 Some improvements to the tooling done or in the pipe-line :
 callgrind next release can now measure system call CPU
 working on developing “callgrind_dif” to help visualising diferences

20

Dev Performance Tracking:
Good Enough/Sufcient to Go Operational ?

 What about : you are on-call, waken up Saturday 4:00 AM
because “users are complaining that the system is slow”
 You need something else than:

 “I will replay the day and get back to you Monday morning”
 What about: is the reference replayed day representative of what

happens on OPS ?
 What about: evolution of the OPS workload and capacity planning

 E.g. what functionalities/queries/… are increasing ?
 E.g. what additional capacity is needed to support X times more queries

of that type ?

 Solution: “permanently activated response time monitoring and
statistics”

21

On-line “TACT Response Time” Monitoring
 Application contains measurement code at “critical points” such as:

 Remote Procedure Call invocation begin/end (i.e. “client side”)
 Remote Procedure Call execution begin/end (i.e. “server side”)
 Database access begin/end
 Signifcant algorithms begin/end, such as: “calculate a vertical trajectory”
 ...

 Measurements typically nested, e.g. inside a RPC execution
begin/end

 The “TACT response time” package maintains:
 A circular bufer with the last M measurements
 For each begin/end measurement:

 Elapsed time, Thread CPU time, optionally full Process CPU time
 Statistics :

 How many measurements
 Histogram of Elapsed/Thread CPU
 Details about the N worst cases

 Reasonable overhead ~1.7% CPU => always activated

22

TACT Response Time
Last M Measurements Circular Bufer

23

TACT Response Time : Statistics

24

TACT Response Time
Used from Dev to Ops

 Dev
 Helps to understand how the system works, e.g. to see messages

exchanged between processes, algorithms executed, …
 Statistics used to analyse Performance Operational Data Replay
 Compare the profle of the “replayed reference day” with OPS profle
 Measure resource consumption for new functionalities
 …

 Ops
 On-line investigation of performance problems
 Bug investigation:

 Policy: exceptions are used for bugs, not for normal behaviour
 In case of exception: take a core dump, drop input, process next message
 => the core dump contains in memory the details of the last M measured

actions
 Post-ops analysis, trend analysis
 Input for capacity planning

25

Performance Tracking of a Big Application
Summary

 (Reasonably) deterministic performance tracking during
development:
 Allows to detect performance regression on a daily basis
 Allows to verify that optimisations really have the desired efect
 Allows to plan capacity for demand growth and new functionalities
 …

 A mix of various techniques and tools are needed, e.g.
 Performance unit test
 Replay real data
 Application self-measurement (“TACT response time”).
 Avoid blind spots by using various tools: perf, valgrind/callgrind, …

 Tooling can be used for various purposes e.g. Replay Tool:
 Is also the (automated) testing tool
 Is used by our users to analyse/optimise operational actions/procedures

 Performance tracking and statistics also on the operational system

26

Tracking Performance of a Big Application
from Dev to Ops

Questions ?

27

	Slide 1
	Objectives of Performance Tracking ?
	Eurocontrol
	IFPS and ETFMS
	Horizontal Trajectory
	Vertical Trajectory
	Performance needs and ETFMS scalability
	Track Performance during Dev: “Performance Unit Tests”
	Slide 9
	Slide 10
	Pitfalls of Performance “Unit Tests”
	Replay Operational Data
	Replay Operational Data Volume of Data to Replay
	Replay Operational Data Sources of non Deterministic Results
	Slide 15
	Replay Operational Data Global Tracking
	Replay Operational Data Per Process Tracking
	Slide 18
	Slide 19
	Dev Performance Tracking: A Summary
	Slide 21
	On-line “TACT Response Time” Monitoring
	TACT Response Time Last M Measurements Circular Buffer
	TACT Response Time : Statistics
	TACT Response Time Used from Dev to Ops
	Performance Tracking of a Big Application Summary
	Tracking Performance of a Big Application from Dev to Ops

