
Cappulada:
What we’ve learned

And why binding C++ is hard

Johannes Kliemann
FOSDEM, Brussels, 2020-02-01

22020-02-01

Recall Cappulada 2019
Goals

■ Automatically bind C++ APIs to
Ada

■ Maintain API layout and type safety

■ Maintain semantically appropriate
mappings

■ Generate mangled symbols

■ Detect and avoid name collisions

■ Be SPARK compatible where
possible

■ Be better than existing solutions

■ Existing solutions (GCC)

▪ No template support

▪ No proper support to use non-
valid identifiers in Ada

▪ Generates uncompilable code

▪ No automatic handling of
constructors/destructors

▪ Fixing requires maintaining a fork
in the long term

32020-02-01

Recall Cappulada 2019
Achievements and Shortcomings

■ Achievements

▪ Templates

▪ Classes, namespaces, nesting

▪ Inheritance, with virtual classes

▪ Builtin types, typedefs, enums,
arrays, pointers, references

▪ Member functions, function
pointers

▪ Private, public, protected scopes

▪ Mangling

■ Shortcomings

▪ Partial template specialization

▪ Typedefs on specific types

▪ Auto keyword

▪ Operator overloads

▪ Function templates

▪ Merging multiple equally named
namespaces

▪ Destructors

▪ Multiple inheritance

42020-02-01

Why is it hard?
Complexity and Semantics

■ Both languages are complex

▪ Ada 2012 Standard has ~1300
pages

▪ C++17 Standard has ~1600
pages

▪ C++ builds upon C so we need
to support C, too

▪ C11 Standard has ~700 pages

■ Inherent semantic differences

▪ Arrays: separate type in Ada,
builtin construct in C++

▪ C++ templates can be used for
meta programming, Ada generics
cannot

▪ Both have different calling
conventions

2020-02-01 5

What doesn’t work?

2020-02-01 6

What doesn’t work?
Using Ada Generics with C++ Templates

■ Templates in C++ are static

■ Linker symbol is generated from
the template arguments

■ Template arguments are always
static

template <typename T>
class A
{
 void inc(T *t);
};

A<int>::inc(int *t);

_ZN1AIiE3incEPi

2020-02-01 7

What doesn’t work?
Using Ada Generics with C++ Templates

generic
 type T is private
package A is

 type Class is limited null record with Convention => CPP;

 procedure Inc (This : in out Class; X : in out T) with
 Import, Convention => CPP,
 External_Name => “_ZN1AI” & M (X) & ”E3incEP” & M (X);
 -- _ZN1AIiE3incEPi

end A;

a.ads: entity for aspect "Import" must be a static expression
a.ads: non-static function call (RM 4.9(6,18))

2020-02-01 8

What doesn’t work?
Using Ada Generics with C++ Templates

■ Theory

▪ Overloading M for Mangling

■ Practice

▪ Overloading doesn’t work on
private types

▪ Return value of M is not static

▪ Generic formal parameters are
never considered static

■ Potential Solution

▪ Preprocessor

function M (X : Integer)
 return String
is (“i”);

2020-02-01 9

What doesn’t work?
C++ Pass by Value

type A is limited record
 X : Integer;
end record with
 Import,
 Convention => CPP;

function Con return A with
 Import, Convention => CPP,
 External_Name => “...”;

pragma CPP_Constructor(Con);

class A
{
 public:
 int X;
 A();
};

2020-02-01 10

What doesn’t work?
C++ Pass by Value

procedure Print (X : A) with

 Import,

 Convention => CPP,

 External_Name => “...”;

class A
{
 public:
 int X;
 A();
};

void print(A a);

2020-02-01 11

What doesn’t work?
C++ Pass by Value

■ Problem: A will be passed by reference from Ada but expected by value in C++

■ Considered Solution: Import Print with Convention C_Pass_By_Copy

■ Problem: C_Pass_By_Copy Convention allowed only for record type

■ Potential Solution: Define a record identical to the class

■ Problem: Unable to convert between both safely (unlike in C++)

2020-02-01 12

What doesn’t work?
Automatic destructor calling

■ Automatically called destructors are not supported in the compiler

■ Destructor could be called manually

■ Controlled objects can implement this functionality

2020-02-01 13

What have we learned?

■ Even if everything fits it’s much work

■ Some things could in theory work

▪ With really high effort

▪ With additional tools

▪ At the cost of usability and safety

■ Some things just won’t work at all

2020-02-01 14

Don’t you fear that you import the
weirdness of C++ into Ada?

2020-02-01 15

YES!

2020-02-01 16

Questions?

Gneiss: A Nice Component Framework in SPARK

Sunday 12:00 K.4.601 (Microkernel devroom)

Johannes Kliemann
kliemann@componolit.com

@Componolit · componolit.com · github.com/Componolit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

