
1

Zink:
OpenGL on Vulkan

Simplifying the future of
the graphics stack

Erik Faye-Lund

erik.faye-lund@collabora.com

02/02/2019

2

Existing solutions
● Think Silicon’s GLOVE

– Only implements OpenGL ES 2.0

– CLA requires copyright assignment

● Google’s ANGLE

– Only implements OpenGL ES (2.0 and 3.x)

● VKGL

– Only targets OpenGL 3 Core Profile

– Doesn’t really work yet…

● Nothing seems to fit!

– But let’s steal all the implementation details we can!

3

Why OpenGL on Vulkan
● OpenGL is a requirement for desktop

– Some modern use-cases are outside of what OpenGL was designed for
● GPU virtualization is the use-case that motivated my work

● Vulkan is here to stay

– Likely to be the leading high-end API going forward“ ”
● It’s better for the community if we can focus on one API

– Lots of existing software depends on OpenGL, so we need it for compatibility

● Support more use-cases?

– Support full OpenGL applications to mobile?

4

Solution: Zink!

5

Proposal: Zink
● Translates Mesa’s Gallium API calls to Vulkan

● An early out-of-tree prototype driver works“ ”
– Supports OpenGL 3.0 on RADV and ANV

● Not really tested on anything else either...

– Lots of awesome contributions by Dave Airlie :)

● Happy-go-lucky approach

– Works much better than I feared

– I can run a lot of games and demos with usable performance

● Currently undergoing re-engineering phase to fix some early mistakes

– Next step: clean up and upstream in Mesa

6

Zink: A Gallium Driver

Mesa

Vulkan

Gallium OpenGL
state-tracker

Zink SWS

Application

7

Zink: How does it work (ish)

Vulkan

Pipeline cache

Gallium OpenGL state-tracker

Program cache Pipeline states Render passes

Framebuffers

Command buffers

Compiler

NIR shaders Draw calls Framebuffers

8

NIR SPIR-V→
● Choose NIR as source IR due to the SSA nature

– Turns out this is a bit harder than I thought
● More on this later

● Written as a reusable module

– Can be reused as an in-tree GLSL SPIR-V compiler?→

● Doesn’t generate awesome code yet

– Desktop Vulkan drivers seems to make up for it

– Haven’t looked at mobile yet; probably need to do better.

9

Difficulties

10

Control Flow
● No support for control-flow in the NIR SPIR-V compiler yet→

– Prototype exists, but there’s problems.

● Trickier than it sounds, because of some SSA-differences

– In NIR, jumps can occur from inside basic blocks
● nir_jump_instr: return, break, continue
● nir_intrinsic_instr: discard, discard_if

– In SPIR-V, all of these terminate the basic block
● This leads to addressing inconsistencies with phi-nodes

– Probably not that hard to solve, but I need to accept to do some lowering first…
● I may have to give up on reusing the phi-nodes directly

11

Typeless SSA Values
● NIR SSA-values are untyped, SPIR-V values are typed

– Currently use uint, and bitcast on every access
● This creates a lot of needless instructions

– Jason has been nice enough to code up an ALU-instruction scanning pass that can
remove most of the casts

● Also useful for OpenGL ES 2.0 GPUs
● Untested so far AFAIK

– Still awkward for constants
● Delay constant-emitting to use?

– This complicates SSA-traversal, but maybe not too bad
● Extend Jason’s scanning pass for this instead?

12

Shader Resources Bindings / Descriptor Sets→
● Currently just stuffs all UBOs and samplers in one giant descriptor set

– Assigning binding-numbers based on shader stage and resource type
● ...Because we compile the different shaders independently

– Approach shamelessly stolen from DXVK

● Vulkan spec suggest high binding numbers might give sub-par performance

● Probably better to use one descriptor set per stage

– Should probably pack bindings

– One problem: might not have enough descriptor-sets for all stages in the future
● But should probably just not enable tessellation unless there’s enough.
● Alternatively: split descriptor-set for tess-stages in two and accept potentially lower

than ideal performance.

13

Descriptor Set Management
● Naive approach cause a lot of VkDescriptorSet objects

– Currently allocate a new one from a big pool for every draw

– If allocation fails: wait for GPU to finish, and reset pool.
● Causes a hitch when this happens, and gives a validation error.

● We can probably do something more clever here:

– Reuse descriptor set if nothing changed

– Several smaller pools rather than one big
● Protected by fences

– Keep track of when we need to flush and switch pool instead of waiting for failure

14

Pipeline Caching
● Pipeline objects are an encapsulation of pretty much all the drawing-state

– Except for UBO/SSBO/texture-bindings

– A few states can be marked as dynamic, and submitted separately

● Creating VkPipeline objects is relatively slow

– We need to cache them to avoid re-creating the same objects over and over again.

– Can generate non-optimized pipelines eagerly, and optimized pipelines on a
background thread

● VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT

● This is similar to shader-variant caching for other drivers

– Except the cache-key is bigger and changes more often?

15

Image Layouts
● Vulkan needs the client to manage image layout transitions

– This is done by issuing vkCmdPipelineBarrier

● Minimal approach currently

– Transitions to VK_IMAGE_LAYOUT_GENERAL early, and leaves it there
● Not ideal from a performance point of view...

– Racy: Resources can be shared between contexts
● Needs some fencing to avoid two command buffers from racing to transitioning an

image

● ANGLE is doing a frame-graph to optimize layout-transitions

– We can consider something like that as well at some point

16

Uniforms / UBOs
● We currently lower uniforms into a default UBO“ ”

– Consider using push-constants when possible instead?

● NIR doesn’t provide declarations of UBOs

– SPIR-V need need to know size of each UBO
● Use max-size + robustBufferAccess?

– Perhaps UBO declarations can be added?
● TGSI provides this...

17

Reliance on EXT extensions
● Will VK_EXT_transform_feedback stay forever?

– My guess: No.

– Probably already not supported on mobile GPUs.

● Emulation needed at some point?

– Write to SSBO with vertex-id instead?
● Only works if there’s no geometry/tesselation shaders

– Emulate GPU pipeline up to the fragment shader using compute?
● Pass-through shader in the end for original draw?“ ”

● Similar concerns for other EXT extensions...

18

Missing features

19

Polygon Mode
● OpenGL allows different polygon mode for front and back-faces

● Vulkan only allow one mode for both

– Currently print a warning and use the front-face state for both

– Emulation?
● Draw all back-faces, then all front-faces?

– Not correct, but maybe better …
● Write primitives out to a buffer and use geometry shader to construct triangles out

of lines and points?

● Does conformance tests even exist for this?

– Low priority either way

20

Texture Border Colors
● OpenGL allows arbitrary texture-border colors

● Vulkan only support three fixed colors:

– Transparent black

– Opaque black

– Opaque white

● Currently hard-coded as transparent black

● Can emulate by injecting shader-code

– Not asas bad as it sounds, but not great either...

● Create Vulkan extension for hardware that supports this?

– Low priority, unlikely to matter for real applications

21

Point Size
● Writing gl_PointSize from shaders works as expected, but...

● No automatic forwarding of glPointSize through shaders yet

– Boring code to write, but should be easy
● Famous last works, I know…

● Probably needed by some other mobile GPU drivers

– Lima / Panfrost?

22

Alpha testing
● In theory just a matter of supporting the NIR discard intrinsics, but...

– Requires control-flow, which we don’t support yet

– NIR and SPIR-V disagree if these count as control-flow or not
● This throws a wrench into the shader-compiler...

23

Current OpenGL Versions

24

OpenGL 2.1
● This is the base version version we can support“ ”

● Requires Vulkan 1.0

– As well as these VkPhysicalDeviceFeatures:
● logicOp
● fillModeNonSolid
● wideLines
● largePoints
● alphaToOne
● shaderClipDistance

– We don’t actually check for those yet, YMMV ;)

25

OpenGL 3.0
● Same HW requirements as OpenGL 2.1, plus

– VK_EXT_transform_feedback

– VK_EXT_conditional_rendering

● Enabled on RADV and ANV

26

Wrapping Up

27

Future!
● Lots more work to be done, most importantly:

– Making the compiler not suck!
● Help here would be very much appreciated

– Fixing rendering-issues in applications

– Upstreaming in Mesa
● Feature-set and performance are already usable

– After that, implementing more modern OpenGL features

● I’m currently the bottle-neck here

– Sorry about that :(

– Open to suggestions on how to avoid this!

28

Zink:
OpenGL on Vulkan
Questions?

29

Backup Slides

30

Window System Integration
Two implementations so far:

● One exposed to Mesa as a software rasterizer

– Slow, copies data with CPU on present

– Portable, should work everywhere“ ”
● One using file descriptor based shared memory

– Fast, share GPU-side buffers across processes

– Requires VK_KHR_external_memory_fd extension

– Currently also requires VK_KHR_maintenance1 to vertically flip rendering
● not strictly speaking necessary, can flip in shader

– Doesn’t work on the NVIDIA blob, due to lack of DRI2 support...

31

Why from an ECO-system prespective
● Ease support of legacy GPUs in the future

– Fewer drivers required to maintain

– Driver community can focus on making Vulkan drivers

● Ensure OpenGL applications won’t all of a sudden break
● Support full OpenGL on non-desktop platforms

– Lots of code hasn’t been ported to OpenGL ES

– Can ease application porting
● Blender on Android some day?

● Possible to extend OpenGL features knowing hardware-specifics

– As long as the features are exposed to Vulkan

32

Why from a Virgil 3D prespective
● Virgil 3D currently doesn’t support Vulkan

– Vulkan support is in progress

● Virgil 3D on OpenGL has some open challenges

– Doing most of the emulation in virglrenderer
● Security issues; virglrenderer highly priviledged

– ...relatively easy to crash the host process?

– Translating TGSI to GLSL and compiling that on the host compiler
● Lots and lots of string manipulations
● The future of TGSI doesn’t look too bright at the moment

33

ALU Swizzles
● In NIR, ALU instructions can have swizzles on their operands

● In SPIR-V ALU-instructions doesn’t have swizzles

– Currently insert OpCompositeExtract, OpCompositeConstruct, and OpVectorShuffle
while traversing operands

● This code is, uh awkward…

– Maybe lower away swizzles into dedicated imov instructions first or something?

34

Scalar vs Vector Types
● In NIR, scalars are one-component vectors

● SPIR-V disallows this

● Needs to peel away vec1 to float etc“ ”
– Not really a big deal, but something worth noting

35

Flat shading
● Flat shading in Gallium is a bit meh…

● The standard approach is using shader-variants, but...

– I would like to use specialization values for shader-variants if I can get away with it

– But flat-decorations can’t naively be added with a specialization value

– Perhaps I can add two inputs and use a boolean specialization value to select which one
I read from?

● Dave Airlie has written some patches to do this as part of the fixed-function emulation

instead!

– Works great!

– Hope to land this separately first, some other drivers want it AFAIK.

36

Future OpenGL Versions

37

OpenGL 3.1
● Same HW requirements as OpenGL 3.0

● Missing features:

– Uniform Buffer Objects

– Primitive Restart
● OpenGL supports arbitrary index-values for restart
● Vulkan only supports the max-value

– VK_INDEX_TYPE_UINT16: 0xFFFF
– VK_INDEX_TYPE_UINT32: 0xFFFFFFFF
– Pretty much the same as in OpenGL ES 3

● Need to rewrite index-buffer and replace the values for correct behavior

38

OpenGL 3.2 – 3.3
● OpenGL 3.2:

– Same HW requirements as OpenGL 3.1, plus these VkPhysicalDeviceFeatures:
● depthClamp
● geometryShader
● shaderTessellationAndGeometryPointSize

● OpenGL 3.3:

– Same HW requirements as OpenGL 3.2, plus:
● occlusionQueryPrecise

● VK_EXT_vertex_attribute_divisor
– Supported on both RADV and ANV

39

OpenGL 4.0 – 4.6
● More VkPhysicalDeviceFeatures required

– Too many to list here

● OpenGL 4.4 will require VK_KHR_sampler_mirror_clamp_to_edge

– Possible to emulate in shader if needed?

● Apart from that, it seems mostly like implementation-work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

