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Existing solutions
● Think Silicon’s GLOVE

– Only implements OpenGL ES 2.0

– CLA requires copyright assignment

● Google’s ANGLE

– Only implements OpenGL ES (2.0 and 3.x)

● VKGL

– Only targets OpenGL 3 Core Profile

– Doesn’t really work yet…

● Nothing seems to fit!

– But let’s steal all the implementation details we can!
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Why OpenGL on Vulkan
● OpenGL is a requirement for desktop

– Some modern use-cases are outside of what OpenGL was designed for
● GPU virtualization is the use-case that motivated my work

● Vulkan is here to stay

– Likely to be the leading high-end  API going forward“ ”
● It’s better for the community if we can focus on one API

– Lots of existing software depends on OpenGL, so we need it for compatibility

● Support more use-cases?

– Support full OpenGL applications to mobile?
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Solution: Zink!
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Proposal: Zink
● Translates Mesa’s Gallium API calls to Vulkan

● An early out-of-tree prototype  driver works“ ”
– Supports OpenGL 3.0 on RADV and ANV

● Not really tested on anything else either...

– Lots of awesome contributions by Dave Airlie :)

● Happy-go-lucky approach

– Works much better than I feared

– I can run a lot of games and demos with usable performance

● Currently undergoing re-engineering phase to fix some early mistakes

– Next step: clean up and upstream in Mesa
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Zink: A Gallium Driver
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state-tracker
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Application
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Zink: How does it work (ish)

Vulkan

Pipeline cache

Gallium OpenGL state-tracker

Program cache Pipeline states Render passes

Framebuffers

Command buffers

Compiler

NIR shaders Draw calls Framebuffers
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NIR  SPIR-V→
● Choose NIR as source IR due to the SSA nature

– Turns out this is a bit harder than I thought
● More on this later

● Written as a reusable module

– Can be reused as an in-tree GLSL  SPIR-V compiler?→

● Doesn’t generate awesome code yet

– Desktop Vulkan drivers seems to make up for it

– Haven’t looked at mobile yet; probably need to do better.
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Difficulties
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Control Flow
● No support for control-flow in the NIR  SPIR-V compiler yet→

– Prototype exists, but there’s problems.

● Trickier than it sounds, because of some SSA-differences

– In NIR, jumps can occur from inside basic blocks
● nir_jump_instr: return, break, continue
● nir_intrinsic_instr: discard, discard_if

– In SPIR-V, all of these terminate the basic block
● This leads to addressing inconsistencies with phi-nodes 

– Probably not that hard to solve, but I need to accept to do some lowering first…
● I may have to give up on reusing the phi-nodes directly



11

Typeless SSA Values
● NIR SSA-values are untyped, SPIR-V values are typed

– Currently use uint, and bitcast on every access
● This creates a lot of needless instructions

– Jason has been nice enough to code up an ALU-instruction scanning pass that can 
remove most of the casts

● Also useful for OpenGL ES 2.0 GPUs
● Untested so far AFAIK

– Still awkward for constants
● Delay constant-emitting to use?

– This complicates SSA-traversal, but maybe not too bad
● Extend Jason’s scanning pass for this instead?
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Shader Resources  Bindings / Descriptor Sets→
● Currently just stuffs all UBOs and samplers in one giant descriptor set

– Assigning binding-numbers based on shader stage and resource type
● ...Because we compile the different shaders independently

– Approach shamelessly stolen from DXVK

● Vulkan spec suggest high binding numbers might give sub-par performance

● Probably better to use one descriptor set per stage

– Should probably pack bindings

– One problem: might not have enough descriptor-sets for all stages in the future
● But should probably just not enable tessellation unless there’s enough.
● Alternatively: split descriptor-set for tess-stages in two and accept potentially lower 

than ideal performance.
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Descriptor Set Management
● Naive approach cause a lot of VkDescriptorSet objects

– Currently allocate a new one from a big pool for every draw

– If allocation fails: wait for GPU to finish, and reset pool.
● Causes a hitch when this happens, and gives a validation error.

● We can probably do something more clever here:

– Reuse descriptor set if nothing changed

– Several smaller pools rather than one big
● Protected by fences

– Keep track of when we need to flush and switch pool instead of waiting for failure
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Pipeline Caching
● Pipeline objects are an encapsulation of pretty much all the drawing-state

– Except for UBO/SSBO/texture-bindings

– A few states can be marked as dynamic, and submitted separately

● Creating VkPipeline objects is relatively slow

– We need to cache them to avoid re-creating the same objects over and over again.

– Can generate non-optimized pipelines eagerly, and optimized pipelines on a 
background thread

● VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT

● This is similar to shader-variant caching for other drivers

– Except the cache-key is bigger and changes more often?
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Image Layouts
● Vulkan needs the client to manage image layout transitions

– This is done by issuing vkCmdPipelineBarrier

● Minimal approach currently

– Transitions to VK_IMAGE_LAYOUT_GENERAL early, and leaves it there
● Not ideal from a performance point of view...

– Racy: Resources can be shared between contexts
● Needs some fencing to avoid two command buffers from racing to transitioning an 

image

● ANGLE is doing a frame-graph to optimize layout-transitions

– We can consider something like that as well at some point
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Uniforms / UBOs
● We currently lower uniforms into a default  UBO“ ”

– Consider using push-constants when possible instead?

● NIR doesn’t provide declarations of UBOs

– SPIR-V need need to know size of each UBO
● Use max-size + robustBufferAccess?

– Perhaps UBO declarations can be added?
● TGSI provides this...
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Reliance on EXT extensions
● Will VK_EXT_transform_feedback stay forever?

– My guess: No.

– Probably already not supported on mobile GPUs.

● Emulation needed at some point?

– Write to SSBO with vertex-id instead?
● Only works if there’s no geometry/tesselation shaders

– Emulate GPU pipeline up to the fragment shader using compute?
● Pass-through shader in the end for original  draw?“ ”

● Similar concerns for other EXT extensions...
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Missing features
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Polygon Mode
● OpenGL allows different polygon mode for front and back-faces

● Vulkan only allow one mode for both

– Currently print a warning and use the front-face state for both

– Emulation?
● Draw all back-faces, then all front-faces?

– Not correct, but maybe better  …
● Write primitives out to a buffer and use geometry shader to construct triangles out 

of lines and points?

● Does conformance tests even exist for this?

– Low priority either way
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Texture Border Colors
● OpenGL allows arbitrary texture-border colors

● Vulkan only support three fixed colors:

– Transparent black

– Opaque black

– Opaque white

● Currently hard-coded as transparent black

● Can emulate by injecting shader-code

– Not asas bad as it sounds, but not great either...

● Create Vulkan extension for hardware that supports this?

– Low priority, unlikely to matter for real applications
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Point Size
● Writing gl_PointSize from shaders works as expected, but...

● No automatic forwarding of glPointSize through shaders yet

– Boring code to write, but should be easy
● Famous last works, I know…

● Probably needed by some other mobile GPU drivers

– Lima / Panfrost?
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Alpha testing
● In theory just a matter of supporting the NIR discard intrinsics, but...

– Requires control-flow, which we don’t support yet

– NIR and SPIR-V disagree if these count as control-flow or not
● This throws a wrench into the shader-compiler...
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Current OpenGL Versions
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OpenGL 2.1
● This is the base version  version we can support“ ”

● Requires Vulkan 1.0

– As well as these VkPhysicalDeviceFeatures:
● logicOp
● fillModeNonSolid
● wideLines
● largePoints
● alphaToOne
● shaderClipDistance

– We don’t actually check for those yet, YMMV ;)
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OpenGL 3.0
● Same HW requirements as OpenGL 2.1, plus

– VK_EXT_transform_feedback

– VK_EXT_conditional_rendering

● Enabled on RADV and ANV
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Wrapping Up
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Future!
● Lots more work to be done, most importantly:

– Making the compiler not suck!
● Help here would be very much appreciated

– Fixing rendering-issues in applications

– Upstreaming in Mesa
● Feature-set and performance are already usable

– After that, implementing more modern OpenGL features

● I’m currently the bottle-neck here

– Sorry about that :(

– Open to suggestions on how to avoid this!
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Zink:
OpenGL on Vulkan
Questions?
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Backup Slides
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Window System Integration
Two implementations so far:

● One exposed to Mesa as a software rasterizer

– Slow, copies data with CPU on present

– Portable, should work everywhere“ ”
● One using file descriptor based shared memory

– Fast,  share GPU-side buffers across processes

– Requires VK_KHR_external_memory_fd extension

– Currently also requires VK_KHR_maintenance1 to vertically flip rendering
● not strictly speaking necessary, can flip in shader

– Doesn’t work on the NVIDIA blob, due to lack of DRI2 support...
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Why from an ECO-system prespective
● Ease support of legacy GPUs in the future

– Fewer drivers required to maintain

– Driver community can focus on making Vulkan drivers

● Ensure OpenGL applications won’t all of a sudden break
● Support full OpenGL on non-desktop platforms

– Lots of code hasn’t been ported to OpenGL ES

– Can ease application porting
● Blender on Android some day?

● Possible to extend OpenGL features knowing hardware-specifics

– As long as the features are exposed to Vulkan
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Why from a Virgil 3D prespective
● Virgil 3D currently doesn’t support Vulkan

– Vulkan support is in progress

● Virgil 3D on OpenGL has some open challenges

– Doing most of the emulation in virglrenderer
● Security issues; virglrenderer highly priviledged

– ...relatively easy to crash the host process?

– Translating TGSI to GLSL and compiling that on the host compiler
● Lots and lots of string manipulations
● The future of TGSI doesn’t look too bright at the moment
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ALU Swizzles
● In NIR, ALU instructions can have swizzles on their operands

● In SPIR-V ALU-instructions doesn’t have swizzles

– Currently insert OpCompositeExtract, OpCompositeConstruct, and OpVectorShuffle 
while traversing operands

● This code is, uh  awkward…

– Maybe lower away swizzles into dedicated imov instructions first or something?
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Scalar vs Vector Types
● In NIR, scalars are one-component vectors

● SPIR-V disallows this

● Needs to peel  away vec1 to float etc“ ”
– Not really a big deal, but something worth noting
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Flat shading
● Flat shading in Gallium is a bit  meh…

● The standard approach is using shader-variants, but...

– I would like to use specialization values for shader-variants if I can get away with it

– But flat-decorations can’t naively be added with a specialization value

– Perhaps I can add two inputs and use a boolean specialization value to select which one 
I read from?

● Dave Airlie has written some patches to do this as part of the fixed-function emulation 

instead!

– Works great!

– Hope to land this separately first, some other drivers want it AFAIK.
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Future OpenGL Versions
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OpenGL 3.1
● Same HW requirements as OpenGL 3.0

● Missing features:

– Uniform Buffer Objects

– Primitive Restart
● OpenGL supports arbitrary index-values for restart
● Vulkan only supports the max-value

– VK_INDEX_TYPE_UINT16: 0xFFFF
– VK_INDEX_TYPE_UINT32: 0xFFFFFFFF
– Pretty much the same as in OpenGL ES 3

● Need to rewrite index-buffer and replace the values for correct behavior
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OpenGL 3.2 – 3.3
● OpenGL 3.2:

– Same HW requirements as OpenGL 3.1, plus these VkPhysicalDeviceFeatures:
● depthClamp
● geometryShader
● shaderTessellationAndGeometryPointSize

● OpenGL 3.3:

– Same HW requirements as OpenGL 3.2, plus:
● occlusionQueryPrecise

● VK_EXT_vertex_attribute_divisor
– Supported on both RADV and ANV



39

OpenGL 4.0 – 4.6
● More VkPhysicalDeviceFeatures required

– Too many to list here

● OpenGL 4.4 will require VK_KHR_sampler_mirror_clamp_to_edge

– Possible to emulate in shader if needed?

● Apart from that, it seems mostly like implementation-work
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