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What is ZFS?
● ZFS is a filesystem with a built in volume manager
● Space from the pool is thin-provisioned to multiple 

filesystems or block volumes (zvols)
● All data and metadata is checksummed
● Optional transparent compression (LZ4, GZIP, soon: ZSTD)
● Copy-on-Write with snapshots and clones
● Each filesystem is tunable with properties



Why All The Excitement?
● Copy-on-Write means snapshots are consistent and instant
● Blocks used in snapshot(s) kept when overwritten/deleted
● Snapshots allow access to filesystem at point-in-time
● No performance impact on reads/writes
● Take no additional space until blocks change
● Makes your storage ransomware-resistant
● Clones allow you to “fork” a filesystem



How Do Computers Work?
● Computers have multiple tiers of storage
● Each has different characteristics (speed, latency, capacity, durability) 
● CPU L1 > L2 > L3 > RAM > NVDIMM > Disk Cache > Disk
● "We are therefore forced to recognize the possibility of 

constructing a hierarchy of memories, each of which has 
greater capacity than the preceding but which is less quickly 
accessible." Von-Neumann, 1946.



What Is a Cache?
● Copy of commonly and/or recently used data on faster storage
● This data can be discarded at any time, it is just a copy
● The amount of storage available in the faster tier is limited
● Faster/closer storage is a precious resource
● Need a caching algorithm to determine what to keep in cache
● Algorithm: LRU (Least Recently Used) from 1965 or earlier

● Free RAM is wasted RAM!



LRU: A B C D E D F

Advaitjavadekar [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons



LRU: Pros and Cons

● Usually double-linked list
● Low overhead
● Locality principle: if process 

visits memory location, 
likely to revisit location or 
neighborhood soon

● Ignores frequency
● Does not adapt over time 
● Disrupted by large scans
● Does not consider recent 

history more heavily



LFU: Least Frequently Used
● Same idea as LRU, except instead of keeping a timestamp we 

keep a hit counter. Designed in 1971
● Each time we access a page, we increase the hit counter
● When cache is full, evict the page with the lowest counter
● Unlike an LRU, scanning a database or backing up a filesystem 

will not thrash the cache. The infrequently accessed objects 
will cycle through the cache without dislodging frequently 
accessed pages



LFU: Pros and Cons
● Immune to large scans
● Provides best performance 

for hot spots
● Advanced locality principle: 

probability of revisiting 
location increased with 
number of visits

● Logarithmic complexity 
(slower to update)

● Does not consider recency
● Accumulates data you are 

no longer using



Adaptive Replacement Cache (ARC)
● Proposed in 2003 by Dr. N. Megiddo & Dr. D. Modha
● Combines the best of LRU and LFU, plus some novel tricks
● The cache size (c) is partitioned (p) into two sections
● At the start, p = ½ c, first half of the cache is LRU, second LFU
● In addition to the two caches, there is a “ghost” list for each
● Each time an item is evicted from either cache, its key (but 

not its data) moves to the ghost list for that cache



Adapting the ARC
● There are 4 lists, the LRU, LFU, and their respective ghost lists
● When a page is requested and is resident in the LRU or LFU: 

this is a hit, data is retrieved from the cache, good job!
● The page has now been accessed frequently, moves to the 

LFU if not already there. If it is, LFU counter is incremented
● When a page is requested and it is not resident in either 

cache, this is a miss, better luck next time! Welcome to LRU.



Robbing Peter to Pay Paul
● When a page is requested and it is on one of the ghosts lists: 

If only that particular cache had been a little bit bigger, this 
would have been a hit. We were so close...

● If the hit is on the LRU ghost list, increment p, making the LRU 
larger, and the LFU smaller. We’ll get it right next time!

● If the hit is on the LFU ghost list, decrement p
● The value of p constantly change to move towards the best 

mix of the LRU and LFU algorithms as your workload changes



A Whole Second (Optional) ARC
● Remember back at the beginning of this talk, tiered storage?
● The ARC is RAM, so it is fast, but you only have so much RAM
● There are devices faster than your main storage though…
● L2ARC (Level 2 ARC) uses a small amount of RAM to point to 

data on a high speed storage device (SSD, NVMe, NVDIMM)
● As data nears bottom of the LRU/LFU, it is copied to L2ARC
● Instead of being evicted, replaced with reference to L2ARC
● To avoid large scans, wearing out flash, fill rate is limited



Compressed ARC
● OpenZFS has transparent compression (LZ4, GZIP, ZSTD*)
● This will compress data before it is written to disk, if 

beneficial
● In the past, blocks were decompressed and then cached
● In 2016 George Wilson changed to deferred decompression
● Each time a block is read from cache, it is decompressed 

again
● LZ4 decompression is 2-10 gigabytes/sec/core
● Most users saw 50-200% increase in effective cache size

* Coming Soon™ 



Not Quite That Easy
● The ARC handles filesystem data and metadata separately
● By default, metadata is limited to 25% of the cache
● Data can not be evicted if it is in use
● The ARC is not a fixed size, it has a minimum and maximum 

size, and adapts between them based on memory pressure
● The original ARC algorithm assumes fixed size pages, ARC 

blocks can be anywhere from 512 bytes to 16 MB



ARC vs Swapcache
● There are many memory compression schemes out there
● The general idea is to compress infrequently used memory to 

create additional free memory (conserve space)
● Reacting when the system is under stress is less optimal
● Compressed ARC is using compression to create more cache
● Compressed ARC takes advantage of compression you were 

already doing anyway, decompression is faster and cheaper
● Free memory is wasted memory



Tuning the ARC
● Fileserver: Large ARC, increase metadata cache, L2ARC?
● Block Storage (iSCSI): Large ARC, select correct volblocksize
● Database (A): Small ARC, Cache only metadata, use DB buffer 

cache (understands usable better)
● Database (B): Medium ARC, small DB buffer cache, high 

compression ratio ARC gives higher hit ratio
● Hypervisor: Small-Medium ARC, reserve memory for VMs 

(don’t fight w/ ARC), avoid double caching (VM / host)





More Resources
• Want to know more about ZFS?

– “FreeBSD Mastery: ZFS” & “FreeBSD Mastery: Advanced ZFS”
– Not just for FreeBSD, DRM-Free ebooks ZFSBook.com

• BSDNow.tv - Weekly video podcast on BSD & ZFS
• @allanjude on twitter
• Want more? PapersWeLove.org “ARC after Dark”:

– https://www.slideshare.net/bcantrill/papers-we-love-arc-after-dark
– https://www.youtube.com/watch?v=F8sZRBdmqc0


