
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Writing Network Drivers in High-Level Languages

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger,
Alexander Frank, Thomas Günzel, Stefan Huber, Alexandru Obada,

Maximilian Pudelko, Maximilian Stadlmeier, Sebastian Voit

February 2, 2019

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Writing Network Drivers in High-Level Languages

Paul Emmerich1, Simon Ellmann2, Fabian Bonk3, Alex Egger4,
Alexander Frank5, Thomas Günzel6, Stefan Huber7, Alexandru Obada8,

Maximilian Pudelko9, Maximilian Stadlmeier10, Sebastian Voit11

1C, thesis advisor 2Rust 3OCaml 4Haskell 5Latency measurements
6Swift 7IOMMU 8Python 9VirtIO driver 10C# 11Go

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

About us

Paul
• PhD student at Technical University of Munich
• Researching software packet processing performance

Simon
• Rust driver as bachelor’s thesis, now research assistant

Everyone else mentioned on the title slide
• Did a thesis with Paul as advisor

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 1



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network drivers

Intel XL710 [Picture: Intel.com]

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 2



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

The ixy project

• Attempt to write a simple yet fast user space network driver
• It’s a user space driver you can easily understand and read
• ≈ 1,000 lines of C code, full of references to datasheets and specs
• Supports Intel ixgbe NICs and VirtIO
• Check it out on GitHub: https://github.com/emmericp/ixy

• But is C the best language for drivers?

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 3

https://github.com/emmericp/ixy








Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)
3. Interrupts

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 7



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
• Magic memory area that is mapped to the device
• Memory reads/writes are directly forwarded to the device
• Usually used to expose device registers
• User space drivers: mmap a magic file

2. Direct memory access (DMA)
3. Interrupts

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 8



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)

• Allows the device to read/write arbitrary memory locations
• User space drivers: figure out physical addresses, tell the device to

write there

3. Interrupts

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 9



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)
3. Interrupts

• This is how the device informs you about events
• User space drivers: available via the Linux vfio subsystem
• (Usually) not useful for high-speed network drivers
• We’ll ignore interrupts here

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 10



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

How to write a user space driver in 4 simple steps

1. Unload kernel driver
2. mmap the PCIe MMIO address space
3. Figure out physical addresses for DMA
4. Write the driver

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 11



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Goals for our implementations

• Implement the same feature set as my C reference driver
• Use a similar structure like the C driver
• Write idiomatic code for the selected language
• Use language safety features where possible
• Quantify trade-offs for performance vs. safety

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 12



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Our languages

C#

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 13





Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Rust

What is Rust?

A safe, concurrent, practical systems language.

• No garbage collector
• Unique ownership system and rules for moving/borrowing values
• Unsafe mode

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 15



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Safety in Rust: The ownership system

• Three rules:
1. Each value has a variable that is its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value is freed

• Rules enforced at compile-time
• Ownership can be passed to another variable

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 16



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Safety in Rust: The ownership system by example

• Packets are owners of some DMA memory
• Packets are passed between user code and the driver, thus own-

ership is passed as well
• At any point in time there is only one Packet owner that can change

its memory

let buffer: &mut VecDeque<Packet> = VecDeque::new();
dev.rx_batch(RX_QUEUE, buffer, BATCH_SIZE);
for p in buffer.iter_mut() {

p[48] += 1;
}
dev.tx_batch(TX_QUEUE, buffer);
buffer.drain(..);

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 17



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Safety in Rust: Unsafe code

• Not everything can be done in safe Rust
• Calling foreign functions and dereferencing raw pointers is unsafe
• Many functions in Rust’s standard library make use of unsafe code

let ptr = unsafe {
libc::mmap(
ptr::null_mut(), len, libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED, file.as_raw_fd(), 0,

) as *mut u8
};

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 18



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Example: Setting registers

• Biggest challenge: safe memory handling with unsafe code

fn set_reg32(&self, reg: u32, val: u32) {
assert!(
reg as usize <= self.len - 4 as usize,
"memory access out of bounds"

);

unsafe {
ptr::write_volatile(

(self.addr as usize + reg as usize) as *mut u32, val
);

}
}

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 19



Device under test

MoonGen packet generator

ixy

10 Gbit/s 10 Gbit/s



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Batching at 3.3 GHz CPU speed

1 2 4 8 16 32 64 128 256
0

10

20

30

Batch size

P
ac
k
et

ra
te

[M
p
p
s] C

Rust

Go

C#

OCaml

Swift

Haskell

Python

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 21



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Tail latency at 1 Mpps

0 90 99 99.9 99.99 99.999 Max
0

100

200

99th percentile99.99th percentile99.9999th percentile

Percentile

L
at
en
cy

[µ
s]

C
Rust
Go
C#
OCaml
Swift
Haskell

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 22



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Tail latency at 10 Mpps

0 90 99 99.9 99.99 99.999 Max
0

100

200

99th percentile99.99th percentile99.9999th percentile

Percentile

L
at
en
cy

[µ
s]

C
Rust
Go
C#

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 23



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Tail latency at 20 Mpps

0 90 99 99.9 99.99 99.999 Max
0

100

200

99th percentile99.99th percentile99.9999th percentile

Percentile

L
at
en
cy

[µ
s]

C
Rust
Go

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 24



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Look ma, no root

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit
and then drop privileges?

• Yes, we can
• But it’s not really secure

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 25



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Look ma, no root

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit
and then drop privileges?

• Yes, we can
• But it’s not really secure

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 25



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Look ma, no root

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit
and then drop privileges?

• Yes, we can
• But it’s not really secure

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 25



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 26



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 27



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 28



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 29



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

IOMMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 30



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

IOMMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 31



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Conclusion: Check out our code

• Meta-repository with links:
https://github.com/ixy-languages/ixy-languages

• Drivers are simple: don’t be afraid of them
• No kernel code needed :)

Paul Emmerich, Simon Ellmann — Writing Network Drivers in High-Level Languages 32

https://github.com/ixy-languages/ixy-languages

