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About us

Paul
• PhD student at Technical University of Munich
• Researching software packet processing performance

Simon
• Rust driver as bachelor’s thesis, now research assistant

Everyone else mentioned on the title slide
• Did a thesis with Paul as advisor
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Network drivers

Intel XL710 [Picture: Intel.com]
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The ixy project

• Attempt to write a simple yet fast user space network driver
• It’s a user space driver you can easily understand and read
• ≈ 1,000 lines of C code, full of references to datasheets and specs
• Supports Intel ixgbe NICs and VirtIO
• Check it out on GitHub: https://github.com/emmericp/ixy

• But is C the best language for drivers?
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Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)
3. Interrupts
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Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
• Magic memory area that is mapped to the device
• Memory reads/writes are directly forwarded to the device
• Usually used to expose device registers
• User space drivers: mmap a magic file

2. Direct memory access (DMA)
3. Interrupts
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Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)

• Allows the device to read/write arbitrary memory locations
• User space drivers: figure out physical addresses, tell the device to

write there

3. Interrupts
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Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)
3. Interrupts

• This is how the device informs you about events
• User space drivers: available via the Linux vfio subsystem
• (Usually) not useful for high-speed network drivers
• We’ll ignore interrupts here
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How to write a user space driver in 4 simple steps

1. Unload kernel driver
2. mmap the PCIe MMIO address space
3. Figure out physical addresses for DMA
4. Write the driver
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Goals for our implementations

• Implement the same feature set as my C reference driver
• Use a similar structure like the C driver
• Write idiomatic code for the selected language
• Use language safety features where possible
• Quantify trade-offs for performance vs. safety
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Our languages

C#
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Rust

What is Rust?

A safe, concurrent, practical systems language.

• No garbage collector
• Unique ownership system and rules for moving/borrowing values
• Unsafe mode
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Safety in Rust: The ownership system

• Three rules:
1. Each value has a variable that is its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value is freed

• Rules enforced at compile-time
• Ownership can be passed to another variable
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Safety in Rust: The ownership system by example

• Packets are owners of some DMA memory
• Packets are passed between user code and the driver, thus own-

ership is passed as well
• At any point in time there is only one Packet owner that can change

its memory

let buffer: &mut VecDeque<Packet> = VecDeque::new();
dev.rx_batch(RX_QUEUE, buffer, BATCH_SIZE);
for p in buffer.iter_mut() {

p[48] += 1;
}
dev.tx_batch(TX_QUEUE, buffer);
buffer.drain(..);
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Safety in Rust: Unsafe code

• Not everything can be done in safe Rust
• Calling foreign functions and dereferencing raw pointers is unsafe
• Many functions in Rust’s standard library make use of unsafe code

let ptr = unsafe {
libc::mmap(
ptr::null_mut(), len, libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED, file.as_raw_fd(), 0,

) as *mut u8
};
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Example: Setting registers

• Biggest challenge: safe memory handling with unsafe code

fn set_reg32(&self, reg: u32, val: u32) {
assert!(
reg as usize <= self.len - 4 as usize,
"memory access out of bounds"

);

unsafe {
ptr::write_volatile(

(self.addr as usize + reg as usize) as *mut u32, val
);

}
}
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Device under test

MoonGen packet generator

ixy
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Batching at 3.3 GHz CPU speed
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Tail latency at 1 Mpps
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Tail latency at 20 Mpps
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Look ma, no root

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit
and then drop privileges?

• Yes, we can
• But it’s not really secure
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Memory access on modern systems
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Memory access on modern systems
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Conclusion: Check out our code

• Meta-repository with links:
https://github.com/ixy-languages/ixy-languages

• Drivers are simple: don’t be afraid of them
• No kernel code needed :)
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