
Walking Through Walls

tmunro@freebsd.org  
tmunro@postgresql.org  
thomas.munro@enterprisedb.com  

PostgreSQL ♥ FreeBSD

mailto:tmunro@freebsd.org
mailto:tmunro@postgresql.org
mailto:thomas.munro@enterprisedb.com

About me
• New to FreeBSD hacking 

Mentors: mjg, allanjude

• ~20 years work on proprietary C, C++, … applications
on lots of different kinds of Unix

• Past ~4 years working on PostgreSQL at EnterpriseDB

• Past ~3 years dabbling in FreeBSD, beginning with the
gateway drug of ZFS home storage boxes, now my
main development and server environment

• Personal goal: make FreeBSD and PostgreSQL the
best relational database stack

Berkeley
• INGRES: Developed at UC Berkeley, 197x-1985

• Relational database ideas inspired by IBM’s System/R (though using QUEL
instead of SQL), developed on PDPs just as Unix arrived at Berkeley

• First software released entirely under BSD licence (CSRG distribution still
needed AT&T licence for parts)

• POSTGRES: Developed at UC Berkeley, 1986-1994

• Entirely new system (but still using INGRES’s QUEL query language)

• Developed on SunOS (derived from 4.3BSD) and Dynix (derived from
4.2BSD, added SMP support for Sequent computers) and (probably)
various other flavours of BSD

• PostgreSQL: Modern open source project, 1996-

• We current claim to support Linux, {Open,Net,Free}BSD, macOS, AIX, HP/
UX, Solaris, Windows; in the past we supported IRIX, Tru64, UnixWare,
BSD/OS, BeOS, QNX, SunOS, SCO OpenServer

Latter day PostgreSQL

hackers on a pilgrimage

to Berkeley

Michael Stonebraker

How operating systems
look to database hackers

• APIs, man pages,
standards
chiselled in stone

• Administration
tools, tunables,
monitoring tools

• Things get more
interesting if you
can actually
influence the
operating system!

Database hacker dilemmas
• Use thread/process per sessions and rely on kernel scheduling, or

do own work scheduling over N threads (tuned for CPU topology)?

• Use OS page cache (as well as own cache!), or do direct IO? If
buffered, what amount of user space IO scheduling (read ahead,
write behind, write coalescing etc)?

• Use OS-supplied collation rules for text?

• Use our own userspace locking and IPC primitives?

• … more questions like this

• General theme: use OS facilities or do it ourselves?

• DB2 and Oracle
switched to direct
IO around the
time of the
following
messages from
Linux leadership
(indicating that
this was highly
contentious)

• PostgreSQL is
approximately the
last RDBMS still
using buffered IO
(though others
can as an option)

How PostgreSQL looks
to operating systems

postmaster

checkpointer

…

user backend

Buffer pool, WAL

buffers, process

tracking, array of

sem_t, … } mmap

anonymous

shared,

inherited by

all processes

(before PG9.3,

was just one big 
sysv segment)

vestigial tiny

sysv

shm segment

pgdata/postgres/mycluster
├─ base
│ ├─ 16384
│ └─ 16385  
│ ├─ 12345
│ └─ 12346
└─ pg_wal
 ├─ 000000010000000000000003
 └─ 000000010000000000000004

parallel worker

} Write ahead log

} Relation files

Parallel query
segment }

“dynamic”

shared

memory

segments

created/destroyed

as needed (POSIX

shm_open())

}

socket

File 
descriptor

pool

Processes
13316 └─ postgres -D /data/clusters/main
13441 ├─ postgres: fred salesdb [local] idle
13437 ├─ postgres: fred salesdb [local] idle
13337 ├─ postgres: fred salesdb [local] SELECT
13323 ├─ postgres: logical replication launcher 
13322 ├─ postgres: stats collector
13321 ├─ postgres: autovacuum launcher
13320 ├─ postgres: walwriter
13319 ├─ postgres: background writer
13318 └─ postgres: checkpointer

"Currently, POSTGRES runs as one process for each active user. This was done
as an expedient to get a system operational as quickly as possible. We plan on
converting POSTGRES to use lightweight processes available in the operating
systems we are using. These include PRESTO for the Sequent Symmetry and

threads in Version 4 of Sun/OS."

Stonebraker, Rowe and Herohama, “The Implementation of POSTGRES”, 1989

System calls
Idle backend process: 
 
poll({ 9/POLLIN 10/POLLIN 3/POLLIN },3,-1) = 1 (0x1)
 
Processing a simple read-only query with and without hot cache: 

recvfrom(9,"B\0\0\0\^[\0P0_1\0\0\0\0\^A\0\0"...,8192,0,NULL,0x0) = 50 (0x32)
sendto(9,"2\0\0\0\^DT\0\0\0!\0\^Aabalance"...,71,0,NULL,0) = 71 (0x47)
 
recvfrom(9,"B\0\0\0\^[\0P0_1\0\0\0\0\^A\0\0"...,8192,0,NULL,0x0) = 50 (0x32)
pread(14,"\0\0\0\0000D?\^B\0\0\^D\0\f\^A"...,8192,0x1bc000) = 8192 (0x2000)
sendto(9,"2\0\0\0\^DT\0\0\0!\0\^Aabalance"...,71,0,NULL,0) = 71 (0x47)
 
Writing to the WAL when we COMMIT a transaction:  
 
pwrite(30,"\M^X\M-P\^D\0\^A\0\0\0\0`\M-l\n"...,16384,0xec6000) = 16384 (0x4000)
fdatasync(0x1e) = 0 (0x0)
 
The checkpointer process writing back dirty data durably:  
 
openat(AT_FDCWD,"base/13002/2674",O_RDWR,00) = 17 (0x11)
pwrite(17,"\0\0\0\0x\M^?D\f\0\0\0\0\M-P\^C"...,8192,0x2c000) = 8192 (0x2000)
pwrite(17,"\0\0\0\0\bOD\f\0\0\0\0\M-@\^C\0"...,8192,0x4e000) = 8192 (0x2000)
pwrite(17,"\0\0\0\08\^\D\f\0\0\0\0\^P\^D \b"...,8192,0x5a000) = 8192 (0x2000)
...
fsync(0x13) = 0 (0x0)
fsync(0xf) = 0 (0x0)
fsync(0xe) = 0 (0x0)
fsync(0xd) = 0 (0x0)
…

MAP_SHARED |
MAP_ANONYMOUS

• In PostgreSQL 9.3 we stopped using a big System V shared
memory region and switch to an inherited anonymous shared
mmap region

• Performance tanked on large many-cored FreeBSD systems

• The explanation was mostly that kern.ipc.shm_use_phys=1
was being used on large machines (avoiding the creation of
pv entries that performed poorly at scale), but we don’t have
a similar mode for anonymous memory

• Many improvements were made since then to address the
contention problems; is the problem completely fixed?

• We are planning to add a shared_memory_type=sysv option so that we can go
back to System V (mainly for AIX), which will allow this option to be used again

• Quick testing seemed to indicate that there is still some speed-up reachable
that way on a 40 vCPU m4.x10large system (but I don’t have high confidence
in the results, more testing required)

fdatasync()

• Don’t flush file meta-data when flushing data blocks in the
WAL, just flush the data. 1 random IO instead of 2?

• I tried to work on this myself… probably a bit too tricky
for a starter patch (filesystems are scary), though I had
something kinda working…

• I updated my source tree one day and *blam*, the big
guns had beaten me to it

Done
 in

 Free
BSD 11

setproctitle_fast(3)
13316 └─ postgres -D /data/clusters/main
13441 ├─ postgres: fred salesdb [local] idle
13437 ├─ postgres: fred salesdb [local] UPDATE
13337 ├─ postgres: fred salesdb [local] SELECT
13323 ├─ postgres: logical replication launcher 
13322 ├─ postgres: stats collector
13321 ├─ postgres: autovacuum launcher
13320 ├─ postgres: walwriter
13319 ├─ postgres: background writer
13318 └─ postgres: checkpointer

• PostgreSQL updates the
process title 2+ times per
query

• Linux and other BSDs:
simply write to a buffer in
user-space memory

• FreeBSD: setproctitle(3)
makes two system calls

• New in FreeBSD 12:
setproctitle_fast(3): no
more syscalls!

• Result: ~10% increase in
TPS on 40-core pgbench
-S

Done
 in

 Free
BSD 12

+ Postg
reS

QL 1
2

PostgreSQL 9.6 running trivial query:  
recvfrom(9,”…”...,8192,0,NULL,0x0)
getpid()
__sysctl(0x7fffffffde80,0x4,0x0,0x0,0x801a0f000,0x28)
sendto(8,”\…”...,152,0,NULL,0)
getpid()
__sysctl(0x7fffffffdfd0,0x4,0x0,0x0,0x801a0f000,0x26)
sendto(9,”…”...,63,0,NULL,0)
 
PostgreSQL 12 running trivial query:

recvfrom(9,”…”...,8192,0,NULL,0x0)
sendto(9,”….”…,71,0,NULL,0)

PROC_PDEATHSIG_CTL
• We want child processes to exit

immediately if the ‘postmaster’
dies. Every process holds a pipe,
but testing that is inconvenient
and expensive during busy work
loops

• Linux has
prctl(PR_SET_PDEATHSIG),
stolen from IRIX, to request a
signal when your parent dies;
PostgreSQL 12 now uses that

• New in FreeBSD 11.2:
procctrl(PROC_PDEATHSIG_CTL)

• Result: replication/recovery is
measurably faster*

13316 └─ postgres -D /data/clusters/main
13441 ├─ postgres: fred salesdb [local] idle
13437 ├─ postgres: fred salesdb [local] UPDATE
13337 ├─ postgres: fred salesdb [local] SELECT
13323 ├─ postgres: logical replication launcher 
13322 ├─ postgres: stats collector
13321 ├─ postgres: autovacuum launcher
13320 ├─ postgres: walwriter
13319 ├─ postgres: background writer
13318 └─ postgres: checkpointer

Done
 in

 Free
BSD 12

System V shared memory in
jails

• Previously, multiple copies of PostgreSQL running in
separate jails would interfere with each other, because
System V shared memory was not jailed (there was one
single key namespace for all jails on the same host); this
required using different network ports or UIDs for
PostgreSQL instances in different jails! (And probably
worse things.)

• This was fixed in FreeBSD 11.

Fixe
d in

 Free
BSD 11

kqueue(2)
• PostgreSQL traditionally used poll(2) or

select(2)

• Recently epoll(2) support was added for
Linux, reusing an fd set to fix contention
problems on large multi-socket
machines

• Let’s use kqueue(2)!

• Result: up to ~50% more TPS on some
high concurrency pgbench tests, but
lower on some others!

• More research needed to understand;
apparently related to timing-sensitive
wakeup and scheduling logic in the
kernel

sync_file_range()

• Bugzilla #203891

• Used by PostgreSQL (and Redis, MongoDB, Hadoop, …)
to influence write-back rates, instead of (or in preparation
for) the big hammer of fsyncdata()

• Seems easy (?) for UFS; I have no idea for ZFS (does
ZFS-on-Linux support it?)

Idea
 fo

r F
ree

BSD 13
?

fsyncgate
• It turned out that PostgreSQL didn’t understand the

semantics of fsync() on a very popular operating
system

• If fsync() reports EIO, the kernel may have dropped
your buffered data on the floor even though it was
still dirty; subsequent fsync() calls may therefore
report success but your data is gone

• PostgreSQL (and MySQL and MongoDB and
probably everyone else who spat out their coffee
while reading LWN) now PANIC on any fsync()
failure, rather than retrying

• Ancient Unix did the same, but FreeBSD doesn’t
have this problem since 1999; dirty data is dirty
data, you can’t drop it unless the device goes away,
so future fsync() calls will also fail (or perhaps truly
succeed)

Unicode collations
• Previously, FreeBSD couldn’t collate Unicode text with

strcoll(). Almost everybody wants to use Unicode. The
FreeBSD PostgreSQL port carried a patch to use ICU
instead for collations.

• A new implementation was done for FreeBSD 11, sharing
code with Illumos and DragonflyBSD.

• Recent PostgreSQL also supports ICU as a runtime
option (you can use libc and ICU collations in the same
database).

Fixe
d in

 Free
BSD 11

LC_VERSION_MASK
• Collations define the sort order of text with

strcoll_l(3), and come from upstream sources
like the Unicode CLDR project

• Order controls the structure of btree indexes

• Whenever collation definitions change silently,
the indexes are corrupted … this really
happens!

• Proposal forFreeBSD 13: a way to ask the OS
for the version of the collation definition with
querylocale(3) so we know when we need to
rebuild indexes

cote
côte
coté
côté

Idea
 fo

r F
ree

BSD 13
?

Collation performance
• strcoll_l() currently expands string to wide characters every

time, malloc->expand->free. Could we… not do that?

• PostgreSQL also copies string every time, to add NUL
terminator! Non-standard strncoll_l()? (note “n”, was
rejected from C99, semantics unclear)

• PostgreSQL can also use strxfrm_l() to sort text faster, but
we turned it off because popular implementations were
busted (didn’t always match strcoll_l() order, causing
corruption); can we make a 100% reliable strxfrm_l()?
strnxfrm_l() (note “n”)?

Some more ideas

SIGDANGER
• Warn processes before the

OOM killer strikes (like AIX)

• Chance to free up some
memory or exit voluntarily

• Is this useful?

• Similar ideas 
exist on iOS, 
and Linux user- 
space OOM tools

Ports ideas?
• In most Linux distributions, multiple PostgreSQL versions can be

installed simultaneously (using paths like /usr/local/libexec/postgresql/
12/bin/postgres)

• IMHO the Debian maintainers’ postgresql-common package is the
nicest way to manage starting/stopping/listing multiple PostgreSQL
server instances on the same machine, possibly of different major
versions 
 
pg_lsclusters  
pg_createcluster <version> <name>  
…

• If someone were to port postgresql-common to FreeBSD, it would be
to add special ZFS based commands (snapshot, clone, send/receive
database clusters) and jails support

Shared memory
• The POSIX shm_open() facility has no way to list the

segments that exist on the system! There is no ipcs or
similar to see them. Solving this possibly involves
changing the way shm_open() jailing works first.

• Once mapped into a process, procstat -v doesn’t show
the name of the mapped segment. It should!

• shm_open() is managed with a fixed size smallish hash
table with a big lock around it; perhaps that could be
improved.

Development hurdles

• valgrind port doesn’t work for PostgreSQL (ENOSYS,
aborts); it also contains a bunch of patches that are no
upstreamed

• dtrace ustack() broken in CURRENT

CloudABI?
• Software that is trapped entirely inside a directory, and

starts with a file descriptor for its root directory

• Alternative to jails/containers/VMs etc

• Replace open(…) with openat(root_fd, …)

• Requires removing “global” stuff like SysV shm (need a
new interlocking trick probably based on a file under
pgdata, flock() not available) and POSIX shm (would need
to file-backed mmap files for parallel query?)

Atomicity
• After each checkpoint (periodic restart point), PostgreSQL logs a “full page

image” the first time you dirty each data page, to defend against torn pages
on power loss

• This is not necessary if the filesystem guarantees 8KB atomic writes (= on
power failure and restart, you either have the old 8KB page or the new 8KB
page contents, but not some kind of frankenpage)

• ZFS can make such atomic guarantees due to its data journaling system, so
you can set full_page_writes = off to avoid a ton of extra WAL IO on some
workloads (a form of “write amplication” that people complain about on
PostgreSQL)

• If UFS could somehow offer such guarantees too (for example because the
underlying device can make a gurantee about power failure atomic write
size) then it’s be nice if it could report that to us somehow

ZFS: Recycled file
performance

• Joyent reported that PostgreSQL’s recycling of WAL files, designed to
be faster (on non-COW filesystems), was slower than simply creating
new files every time on ZFS, for them

• I was able to reproduce this phenomenon on a low-end box; many
others were unable to

• Hypothesis: it might be caused by block pointers and/or dnodes falling
out of cache, so that when you come to write over the old file again
you have to fault in some random access disk pages (even though the
actual data pages don’t need to be faulted in, because we entirely write
over them and the record size matches PostgreSQL’s block size)

• PostgreSQL should probably just take Joyent’s patch to disable
recycling; the whole concept doesn’t really make sense for COW…

Double buffering
• If your data fits in

PostgreSQL’s buffers,
performance is best

• If your data doesn’t fit
in PostgreSQL’s
buffers, but does fit in
OS page cache,
performance is nearly
as good

• There is a valley of
doom where it doesn’t
quite fit in either, even
though you have
enough physical RAM

Direct IO solves the double
buffering problem but…

• Most relational databases added support for direct IO as it
became available and reliable on operating systems

• You still need to support buffered IO for filesystems like ZFS

• Developing all the user-space IO scheduling machinery may
be a bit tricky, but probably worth the pain

• In theory you could have a system call that allows “clean”
data to be returned to the kernel page cache (or ARC), so
you could have exclusive buffering and fix the “valley of
doom”

UFS: Read-ahead vs write-
behind

file

• Sometimes PostgreSQL generates alternating reads and writes that
are really sequential, but UFS doesn’t detect that

• vfs_nops.c’s fp->f_nextoff is a single int to track sequential access

• Should we track separate read and write nextoff variables? (But
then why stop there, you could have more streams like ZFS
does….)

UFS: Read-ahead vs
parallel query execution

8kb 8kb 8kb 8kb

4kb

2 3

8kb 8kb

1

8kb

32kb (or 128kb, or …) 32kb

• Processes read
8kb pages into
the PostgreSQL
buffer pool

• The OS’s read-
ahead heuristics
(hopefully) detects
this pattern and
ideally begins
issuing larger
reads to the disk
to pre-load OS
page cache
pages

• We could do
better with direct
IO and our own IO
scheduler

4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb

NFS
• PostgreSQL generally doesn’t work well on NFS, because

it expects eager reservation (close() and fsync() are not
great times to get ENOSPC, after pwrite() succeeded).

• NFSv4 protocol allows for ALLOCATE, but it’s not entirely
clear how a humble userspace program can get the right
guarantees (on various operating systems)

• Topic for further research

• Curiously some other famous relational database has its
own NFS client implementation

Thank you!
Questions, more ideas?

