Speeding up the Booting Time of a Toro Appliance

Matias E. Vara Larsen

www.torokernel.io
matiasevara@gmail.com

Application-oriented Kernel

4 Toro Kernel I
[Process][Memory]

[Devices] [Filesystem]
_ [Networking])

Toro is an embedded kernel including five units:

- Process

- Memory

- Filesystem

- Networking

- Devices, e.g., Block Device, Network Device

Each unit provides minimalist APIs accessible from the embedded application

Application-oriented Kernel

BeginThread()
ThreadSleep()

RegisterBlockDriver()
RegisterNetworkinterface()

1 Toro Kernel

[Process][Memory]

[Devices] [Filesystem]
|

_

GetMem()
FreeMem()

[Networking] .

)

FileOpen()
FileClose()

- Process
- Memory
- Filesystem
- Networking

- Devices, e.g., Block Device, Network Device
Each unit provides minimalist APIs accessible from the embedded application

Toro is an embedded kernel including five units:

Application-oriented Kernel

-

Toro Kernel N\

[Process][Memory]

[Devices] [Filesystem]

_

[Networking] Y,

Uses

[Microservice]

* User application and kernel units are

compiled in a single binary

* The application includes only the

component required

Application-oriented Kernel

-

Toro Kernel N\

[Process][Memory]

[Devices] [Filesystem]

_

[Networking] Y,

Uses

[Microservice]

program HelloWorld,;

uses
Memory,
Filesystem,
Ext2,
E1000;

begin

Il

/I Your Code
Il

end.

Application-oriented Kernel

-

Toro Kernel N\

[Process][Memory]

[Devices] [Filesystem]

_

[Networking] Y,

Uses

[Microsewice]

\

L w
LaunchesT
"\ Clouditsh
Usesl

>Toro.elf | Builder >[Image]

Application-oriented Kernel

Toro Kernel

v

Launches

\ Ol s oL /

[Process Memoryw \
‘ vices]fFHOQVQhﬁ
N

“It's all talk until the code runs.”

- Ward Cunningham

Uses

[I\/Iicroservice]

> Toro.elf

Builder ‘>L Image J

Application-oriented Kernel

L. w]
LaunchesT
Booting time is 1,55<<
\Cloudlt.sh/
N Usesl
. Image
Toro.elf | Builder (~ 4MB)
\ J
Y

Time to build a new
Image is about 1s

Application-oriented Kernel

L wm |
LaunchesT
Booting time is 1,5s<<
\Cloudlt.sh/
Usesl

These timings
can be improved
Time to build a ney to enhance continuous
Image is about 1s deployment of

_ microservices -

Booting in Toro

Booting in Toro

Initialization - BIOS

- Other stuff
J _

[Bootloader }

Kernel
Initialization

[VMM 1 - Initialization of the device model
<

Booting in Toro

Initialization - BIOS

VMM - Initialization of the device model
<
- Other stuff

—
—
- Initialize hardware
- Initialize processors, e.g., setup and enable
Bootloader <

paging, enable long mode, etc
- Load the kernel into memory. In this case the
\image’s size is very important

Kernel
Initialization

s I I I = = = = =N =H = =N =5 = &= = n

VMM
Initialization

[Bootloader J

~.--------'

Booting in Toro

7

N
This presentation deals with
different approaches
to improve these times

N— S

Outline

Speeding Up the Bootloader

Speeding Up the Virtual Machine Monitor (VMM)
Evaluation

Conclusion

QA

Speeding Up the Bootloader

* Context:

- The generated image is a copy of the kernel in memory

- The bootloader just read from the disk the image and then it writes it to memory
* Problem:

- The resulting image is huge

- The bootloader is still complex

* Proposal:
- Load Toro by using the “-kernel” option in QEMU/KVM (see Issue #223 at Github)

Kernel Binary

(lf32)

Multiboot Header

MultiBootloader

text

.data

QEMU/KVM

$ kvm -kernel Toro.elf

Memory

Kernel Binary

(lf32)

Multiboot Header

MultiBootloader

text

.data

y QEMU/KVM

$ kvm -kernel Toro.elf

Memory

/ e N
Multiboot Header
_ J
4)
MultiBootloader
_ J
Kernel Binary ()
(elf32) text
_
4
.data
\ _

QEMU/KVM

$ kvm -kernel Toro.elf

Memory

[MultiBootloader] [

text

.data]

/ e N
Multiboot Header
_ J
é N
MultiBootloader /
_ J
Kernel Binary 4 \ QEMU/KVM
(elf32) text
b / $ kvm -kernel Toro.elf
()
.data
. R y,
Processor is already
in protected mode

MultiBootloader text data
(MutibootMain()) (KernelMain()) '

Speeding Up the Bootloader

* Benefits:
- Reduce image size since it is only an elf32 binary from 4MB to 130kb

- Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to
protected mode

- Reduce booting time from 1.5s to 0.5s

Speeding Up the Bootloader

* Benefits:
- Reduce image size since it is only an elf32 binary from 4MB to 130kb

- Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to
protected mode

- Reduce booting time from 1.5s to 0.5s

* Drawbacks:
- VMM has to support the loading of a multiboot kernel
- Supports only elf32, so some magic is needed to make it work with elf64

- We still have to jump to long mode

Speeding Up the Bootloader

* Benefits:
- Reduce image size since it is only an elf32 binary from 4MB to 130kb

- Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to
protected mode

- Reduce booting time from 1.5s to 0.5s

* Drawbacks:
- VMM has to support the loading of a multiboot kernel
- Supports only elf32, so some magic is needed to make it work with elf64

- We still have to jump to long mode

ap
.. Qemu-lite works around
these but project seems
discontinued
(Port of Toro at Issue #192)

Speeding U

Speeding U
Evaluation
Conclusion

QA

ol

0 1

Outline

ne Bootloader

ne VMM

Speeding Up the VMM

We study three approaches to improve the time spent in VMM initialization
We focus on KVM/QEMU-based VMM
These approaches are: QBoot, NEMU and Firecraker

These approaches simplifies some aspect of the VMM, e.g., loading the of the kernel,
hardware initialization or device model

Guest (Mode)
Device

KVM Driver

In-kernel
device emulation

Guest (Mode)
Device BIOS
Emulation (QBoot)

QBoot:

- Minimal x86 firmware for QEMU to
boot Linux

- https://github.com/bonzini/gboot

- “A couple hardware initialization
routines written mostly from scratch but
with good help from SeaBIOS source
code”

- Limit of 8 MB for
vmlinuz+initrd+cmdline

$ kvm -bios bios.bin -kernel Toro.elf

KVM Driver

In-kernel
device emulation

https://github.com/bonzini/qboot

NEMU[1]:

- Based on QEMU only for x86-64 and
aarch64

- Reduced device model by focusing on
non-emulated devices to reduce the
VMM’s footprint and the attack surface
- Proposes a new machine type named
‘virt’ which is thinner and only boots
from UEFI

Guest (Mode)
BIOS

Device
Emulation
Minimal

[1]“Honey-I-Shrunk-the-Hypervisor”, Building a Legacy Free Platform for QEMU,

Robert Bradford, Intel

KVM Driver

In-kernel
device emulation

Firecracker:
- Simple VMM implemented in Rust
developed by Amazon Web Services to
accelerate the speed and efficiency of
services like AWS Lambda and AWS
Fargate

- Sets vCPU to long mode, sets pages
tables the Linux way and expects
kernel to be in vmlinux format (64-bit
ELF uncompressed)

Guest (Mode)
Linux-based

KVM Driver

In-kernel
device emulation

Evaluation

e We measured the time that takes the kernel to
start to execute, I.e., the time since the VM Is

launched until t

* \We compared t

ne KernelMain() is executed

nese times by using the

presented solutions

e See Issue #276 at Github for more information

Results

4 cores Intel(R) Atom(TM) CPU C2550 @ 2.40GHz
8 GB of physical memory

Approach Image Binary Binary with QBoot
QEMU/KVM (2.5.0) 1457 ms 452 ms 132 ms
NEMU (#39af42) 309 ms 95 ms
Firecracker (0.14.0) 17ms

$ echo “Hello World!”
avg: 2.629263ms

https://blog.iron.io/the-overhead-of-docker-run/

Conclusion

* Booting time improved by a factor x11 when using
multiboot and QBoot

* Booting time improved by a factor x85 when using
Firecracker

* Trade-off between the needed work to adapt the kernel
and minimizing booting time

QA

* http://www.torokernel.io
* torokernel@gmail.com
* Twitter @torokernel

* Torokernel wiki at github
— My first Three examples with Toro

* Test Toro in 5 minutes (or less...)

— torokernel-docker-gemu-webservices at
Github

CODE WITH US

mailto:torokernel@gmail.com

QA

* http://www.torokernel.io

* torokernel@gmail.com

mailto:torokernel@gmail.com

