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GetMem()
FreeMem()

BeginThread()
ThreadSleep()

FileOpen()
FileClose()

RegisterBlockDriver()
RegisterNetworkInterface()
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program HelloWorld;

uses
  Memory,
  Filesystem,
  Ext2,
  E1000; 

begin
//
// Your Code
//
end.       
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“It’s all talk until the code runs.” - Ward Cunningham
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These timings 
can be improved 

to enhance continuous 
deployment of 
microservices
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Booting in Toro
- Initialization of the device model
- BIOS
- Other stuff

- Initialize hardware
- Initialize processors, e.g., setup and enable 
paging, enable long mode
- Load the kernel into memory. In this case the 
image’s size is very important

This presentation deals with 
different approaches 

to improve these times
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Speeding Up the Bootloader
● Context:

– The generated image is a copy of the kernel in memory

– The bootloader just read from the disk the image and then it writes it to memory

● Problem:

– The resulting image is huge 

– The bootloader is still complex

● Proposal:

– Load Toro by using the “-kernel” option in QEMU/KVM (see Issue #223 at Github)
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Multiboot Header

.text

.data

MultiBootloader

Kernel Binary
(elf32)

QEMU/KVM

.text
(KernelMain())

.data
MultiBootloader

(MutibootMain())

Memory

$ kvm -kernel Toro.elf

Ju
mps

Processor is already
in protected mode
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protected mode
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– Reduce image size since it is only an elf32 binary from 4MB to 130kb

– Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to 
protected mode

– Reduce booting time from 1.5s to 0.5s

● Drawbacks:

– VMM has to support the loading of a multiboot kernel

– Supports only elf32, so some magic is needed to make it work with elf64

– We still have to jump to long mode
Qemu-lite works around 
these but project seems 

discontinued
(Port of Toro at Issue #192)
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Speeding Up the VMM
● We study three approaches to improve the time spent in VMM initialization

● We focus on KVM/QEMU-based VMM 

● These approaches are: QBoot, NEMU and Firecraker

● These approaches simplifies some aspect of the VMM, e.g., loading the of the kernel, 
hardware initialization or device model
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QBoot:
- Minimal x86 firmware for QEMU to 
boot Linux
- https://github.com/bonzini/qboot
- “A couple hardware initialization 
routines written mostly from scratch but 
with good help from SeaBIOS source 
code”
- Limit of 8 MB for 
vmlinuz+initrd+cmdline

$ kvm -bios bios.bin -kernel Toro.elf

https://github.com/bonzini/qboot
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NEMU[1]:
- Based on QEMU only for x86-64 and 
aarch64
- Reduced device model by focusing on 
non-emulated devices to reduce the 
VMM’s footprint and the attack surface
- Proposes a new machine type named 
‘virt’ which is thinner and only boots 
from UEFI

[1]“Honey-I-Shrunk-the-Hypervisor”, Building a Legacy Free Platform for QEMU, 
Robert Bradford, Intel
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Firecracker:
- Simple VMM implemented in Rust 
developed by Amazon Web Services to 
accelerate the speed and efficiency of 
services like AWS Lambda and AWS 
Fargate
- Sets vCPU to long mode, sets pages 
tables the Linux way and expects 
kernel to be in vmlinux format (64-bit 
ELF uncompressed)



 

Evaluation
● We measured the time that takes the kernel to 

start to execute, i.e., the time since the VM is 
launched until the KernelMain() is executed 

● We compared these times by using the 
presented solutions 

● See Issue #276 at Github for more information



 

Results

Approach Image Binary Binary with QBoot

QEMU/KVM (2.5.0) 1457 ms 452 ms 132 ms

NEMU (#39af42) 309 ms 95 ms

Firecracker (0.14.0) 17ms

4 cores Intel(R) Atom(TM) CPU  C2550  @ 2.40GHz
8 GB of physical memory

$ echo “Hello World!”
avg: 2.629263ms

https://blog.iron.io/the-overhead-of-docker-run/



 

Conclusion
● Booting time improved by a factor x11 when using 

multiboot and QBoot

● Booting time improved by a factor x85 when using 
Firecracker 

● Trade-off between the needed work to adapt the kernel 
and minimizing booting time    
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