

Speeding up the Booting Time of a Toro Appliance
Matias E. Vara Larsen

www.torokernel.io
matiasevara@gmail.com

Toro Kernel

Application-oriented Kernel

Process

Networking

Devices Filesystem

Memory

Toro is an embedded kernel including five units:
- Process
- Memory
- Filesystem
- Networking
- Devices, e.g., Block Device, Network Device
Each unit provides minimalist APIs accessible from the embedded application

Toro Kernel

Application-oriented Kernel

Process

Networking

Devices Filesystem

Memory

Toro is an embedded kernel including five units:
- Process
- Memory
- Filesystem
- Networking
- Devices, e.g., Block Device, Network Device
Each unit provides minimalist APIs accessible from the embedded application

GetMem()
FreeMem()

BeginThread()
ThreadSleep()

FileOpen()
FileClose()

RegisterBlockDriver()
RegisterNetworkInterface()

Microservice

Uses

Application-oriented Kernel
● User application and kernel units are

compiled in a single binary

● The application includes only the
component required

Toro Kernel

Process

Networking

Devices Filesystem

Memory

Microservice

Uses

Application-oriented Kernel
● User application and kernel units are

compiled in a single binary

● The application includes only the
component required

Toro Kernel

Process

Networking

Devices Filesystem

Memory
program HelloWorld;

uses
 Memory,
 Filesystem,
 Ext2,
 E1000;

begin
//
// Your Code
//
end.

Application-oriented Kernel

Builder

CloudIt.sh

Uses

Launches

VM

Toro.elf Image

Microservice

Uses

Toro Kernel

Process

Networking

Devices Filesystem

Memory

Application-oriented Kernel

Builder

CloudIt.sh

Uses

Launches

VM

Toro.elf Image

Microservice

Uses

Toro Kernel

Process

Networking

Devices Filesystem

Memory

“It’s all talk until the code runs.” - Ward Cunningham

Application-oriented Kernel

Builder

CloudIt.sh

Uses

Launches

VM

Toro.elf
Image

(~ 4MB)

Microservice

Uses

Toro Kernel

Process

Networking

Devices Filesystem

Memory

Time to build a new
image is about 1s

Booting time is 1,5s

Application-oriented Kernel

Builder

CloudIt.sh

Uses

Launches

VM

Toro.elf
Image

(~ 4MB)

Microservice

Uses

Toro Kernel

Process

Networking

Devices Filesystem

Memory

Time to build a new
image is about 1s

Booting time is 1,5s

These timings
can be improved

to enhance continuous
deployment of
microservices

VMM
Initialization

Bootloader

Kernel
Initialization

Booting in Toro

VMM
Initialization

Bootloader

Kernel
Initialization

Booting in Toro
- Initialization of the device model
- BIOS
- Other stuff

VMM
Initialization

Bootloader

Kernel
Initialization

Booting in Toro
- Initialization of the device model
- BIOS
- Other stuff

- Initialize hardware
- Initialize processors, e.g., setup and enable
paging, enable long mode, etc
- Load the kernel into memory. In this case the
image’s size is very important

VMM
Initialization

Bootloader

Kernel
Initialization

Booting in Toro
- Initialization of the device model
- BIOS
- Other stuff

- Initialize hardware
- Initialize processors, e.g., setup and enable
paging, enable long mode
- Load the kernel into memory. In this case the
image’s size is very important

This presentation deals with
different approaches

to improve these times

Outline
● Speeding Up the Bootloader
● Speeding Up the Virtual Machine Monitor (VMM)
● Evaluation
● Conclusion
● QA

Speeding Up the Bootloader
● Context:

– The generated image is a copy of the kernel in memory

– The bootloader just read from the disk the image and then it writes it to memory

● Problem:

– The resulting image is huge

– The bootloader is still complex

● Proposal:

– Load Toro by using the “-kernel” option in QEMU/KVM (see Issue #223 at Github)

Multiboot Header

.text

.data

MultiBootloader

Kernel Binary
(elf32)

QEMU/KVM

Reads

Memory

$ kvm -kernel Toro.elf

Multiboot Header

.text

.data

MultiBootloader

Kernel Binary
(elf32)

QEMU/KVMReads

Memory

$ kvm -kernel Toro.elf

Multiboot Header

.text

.data

MultiBootloader

Kernel Binary
(elf32)

QEMU/KVM

Loads

.text .dataMultiBootloader

Memory

$ kvm -kernel Toro.elf

Multiboot Header

.text

.data

MultiBootloader

Kernel Binary
(elf32)

QEMU/KVM

.text
(KernelMain())

.data
MultiBootloader

(MutibootMain())

Memory

$ kvm -kernel Toro.elf

Ju
mps

Processor is already
in protected mode

Speeding Up the Bootloader
● Benefits:

– Reduce image size since it is only an elf32 binary from 4MB to 130kb

– Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to
protected mode

– Reduce booting time from 1.5s to 0.5s

Speeding Up the Bootloader
● Benefits:

– Reduce image size since it is only an elf32 binary from 4MB to 130kb

– Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to
protected mode

– Reduce booting time from 1.5s to 0.5s

● Drawbacks:

– VMM has to support the loading of a multiboot kernel

– Supports only elf32, so some magic is needed to make it work with elf64

– We still have to jump to long mode

Speeding Up the Bootloader
● Benefits:

– Reduce image size since it is only an elf32 binary from 4MB to 130kb

– Reduce bootloader complexity since QEMU loads the kernel into memory and yield the CPU to
protected mode

– Reduce booting time from 1.5s to 0.5s

● Drawbacks:

– VMM has to support the loading of a multiboot kernel

– Supports only elf32, so some magic is needed to make it work with elf64

– We still have to jump to long mode
Qemu-lite works around
these but project seems

discontinued
(Port of Toro at Issue #192)

Outline
● Speeding Up the Bootloader
● Speeding Up the VMM
● Evaluation
● Conclusion
● QA

Speeding Up the VMM
● We study three approaches to improve the time spent in VMM initialization

● We focus on KVM/QEMU-based VMM

● These approaches are: QBoot, NEMU and Firecraker

● These approaches simplifies some aspect of the VMM, e.g., loading the of the kernel,
hardware initialization or device model

 Bare-metal host

Linux Kernel

VMM

KVM Driver

Guest (Mode)

Device
Emulation BIOS

In-kernel
device emulation

 Bare-metal host

Linux Kernel

QEMU

KVM Driver

Guest (Mode)

Device
Emulation

BIOS
(QBoot)

In-kernel
device emulation

QBoot:
- Minimal x86 firmware for QEMU to
boot Linux
- https://github.com/bonzini/qboot
- “A couple hardware initialization
routines written mostly from scratch but
with good help from SeaBIOS source
code”
- Limit of 8 MB for
vmlinuz+initrd+cmdline

$ kvm -bios bios.bin -kernel Toro.elf

https://github.com/bonzini/qboot

 Bare-metal host

Linux Kernel

NEMU (VMM)

KVM Driver

Guest (Mode)

Device
Emulation
(Minimal)

BIOS

In-kernel
device emulation

NEMU[1]:
- Based on QEMU only for x86-64 and
aarch64
- Reduced device model by focusing on
non-emulated devices to reduce the
VMM’s footprint and the attack surface
- Proposes a new machine type named
‘virt’ which is thinner and only boots
from UEFI

[1]“Honey-I-Shrunk-the-Hypervisor”, Building a Legacy Free Platform for QEMU,
Robert Bradford, Intel

 Bare-metal host

Linux Kernel

Firecracker (VMM)

KVM Driver

Guest (Mode)
Linux-based

Device
Emulation BIOS

In-kernel
device emulation

Firecracker:
- Simple VMM implemented in Rust
developed by Amazon Web Services to
accelerate the speed and efficiency of
services like AWS Lambda and AWS
Fargate
- Sets vCPU to long mode, sets pages
tables the Linux way and expects
kernel to be in vmlinux format (64-bit
ELF uncompressed)

Evaluation
● We measured the time that takes the kernel to

start to execute, i.e., the time since the VM is
launched until the KernelMain() is executed

● We compared these times by using the
presented solutions

● See Issue #276 at Github for more information

Results

Approach Image Binary Binary with QBoot

QEMU/KVM (2.5.0) 1457 ms 452 ms 132 ms

NEMU (#39af42) 309 ms 95 ms

Firecracker (0.14.0) 17ms

4 cores Intel(R) Atom(TM) CPU C2550 @ 2.40GHz
8 GB of physical memory

$ echo “Hello World!”
avg: 2.629263ms

https://blog.iron.io/the-overhead-of-docker-run/

Conclusion
● Booting time improved by a factor x11 when using

multiboot and QBoot

● Booting time improved by a factor x85 when using
Firecracker

● Trade-off between the needed work to adapt the kernel
and minimizing booting time

QA
● http://www.torokernel.io
● torokernel@gmail.com
● Twitter @torokernel
● Torokernel wiki at github

– My first Three examples with Toro

● Test Toro in 5 minutes (or less...)
– torokernel-docker-qemu-webservices at

Github

mailto:torokernel@gmail.com

QA
● http://www.torokernel.io
● torokernel@gmail.com
● Twitter @torokernel
● Torokernel wiki at github

– My first Three examples with Toro

● Test Toro in 5 minutes (or less...)
– torokernel-docker-qemu-webservices at

Github

That’s all fo
lks!

mailto:torokernel@gmail.com

