
Simon Kuenzer <simon.kuenzer@neclab.eu>
Senior Researcher, NEC Laboratories Europe GmbH

FOSDEM’19

This work has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreements no. 675806 (“5G
CITY”) and 761592 (“5G ESSENCE”). This work reflects only the author’s
views and the European Commission is not responsible for any use that
may be made of the information it contains.

Unikernels Made Easy

3 © NEC Corporation 2019

VMs vs. Containers

▌VMs have been around for a long time
lThey allow consolidation, isolation, migration, …

▌Then containers came and many people LOVED them.
Why?

Containers are much easier to create
and deploy. I just write this Dockerfile
and I’m done.

Containers are much smaller. My VM
takes 10 GB, my container only a few
hundred MB.

Containers are much faster to bring up than
VMs. My VM takes minutes to boot, my
container only a second.

Did you hear about Unikernels? VMs have
they advantages, most importantly strong

isolation.

4 © NEC Corporation 2019

Unikernels as VMs

▌Unikernels are purpose-built
l Thin kernel layer, only what application needs
lSingle monolithic binary that contains OS and application
▌No isolation within Unikernel, done with hypervisor
lOne application à Flat and single address space
▌Further advantages from specialization

App A
Libs A

App B
Libs B

Unikernels

Kernel

Hardware

Kernel

App B
Libs B

Traditional VMs

Hypervisor

App A
Libs A

Hardware

Hypervisor

5 © NEC Corporation 2019

Unikernel Gains

▌Fast instantiation, destruction and migration time
l10s of milliseconds

▌Low memory footprint
lFew MB of RAM

▌High density
l10k guests on a single server node

▌High Performance
l10-40Gbit/s throughput with a single guest CPU

▌Reduced attack surface
lLess components exist in Unikernel
lStrong isolation by hypervisor

LightVM [Manco SOSP 2017], Elastic CDNs [Kuenzer VEE 2017], Superfluid Cloud [Manco HotCloud 2015] , ClickOS [Martins NSDI 2014]

6 © NEC Corporation 2019

In Numbers: Instantiation Times

100

101

102

103

104

105

0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of running guests

Process Create

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

100

101

102

103

104

105

0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of running guests

Process Create Docker Boot

100

101

102

103

104

105

0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of running guests

Docker Boot Debian Boot Debian Create

100

101

102

103

104

105

0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of running guests

MiniOS Boot MiniOS Create

Process:
0.7ms-10ms

Docker:
150ms-550ms

Debian:
2.6-82 secs

Mini-OS:
63ms-1.4secs

7 © NEC Corporation 2019

In Numbers: Performance

▌MiniCache Unikernel: Purpose-built static HTTP Webserver

Legend: MiniCache
(M) versus Debian
(D) and Tinyx (T).
L=lighttpd and
N=nginx.600kreq/s

32Gbit/s

Experiments were conducted on Intel Xeon E5 1630v3 3.7GHz, 32GB DDR4 RAM, Mellanox ConnectX-3 40Git/s
Ethernet, Xen 4.4.2, Debian Jessie with Linux 4.0.0 as Dom0 and booted from RAM

8 © NEC Corporation 2019

Application Domains

Fast boot,
migration
destroy

Resource
efficient

High
performance

Mission
critical

Minimal SW Stack

Reactive vNFs,
Serverless,
Lambda,
etc.

Minimal SW Stack

Serverless,
(Per-customer) vNFs,
IoT,
MEC,
etc.

Small code base
à Low attack surface
à Cheaper

verification

Automotive,
(Industrial) IoT,
etc.

Specialization

NFV,
MEC,
etc.

9 © NEC Corporation 2019

The Devil is in the Details

▌So, Unikernels:
lGive similar speed and size of containers
lBut add strong isolation with virtualization and

increase security due to smaller code base

▌The problem is Unikernel development:
Optimized Unikernels are manually built
lBuilding takes several months or even longer
•We’ve done it before, multiple times

lPotentially repeat the process for each target application
•We’ve done that too…

That’s not an effective way of doing
things!

10 © NEC Corporation 2019

Unikraft - A Unikernel Framework

Motivation
▌Support wide range of use cases
▌Simplify building and optimizing
▌Simplify porting of existing applications
▌Common and shared code base for Unikernel creators
▌Support different hypervisors and CPU architectures

▌Concept: “Everything is a library”
lDecomposed OS functionality
▌Two components:
lLibrary Pool
lBuild Tool

Unikraft

Overview

12 © NEC Corporation 2019

Unikernels

architecture
libs

main
libs

platform
libs

libarm32arch.olibx86_64arch.o

libxenplat.o

drivers
libconsole.o

libixgbe.o
libvirtio.o

network stack
liblwip.o
libtcpip.o
libhttp.o

memory allocators
libbuddy.o
libheap.o
libmempool.o

filesystems
libvfs.o
libfat.o
libext3.o

runtimes
libocaml.o
libpython.o
liberlang.o

schedulers
libcoop.o
libpreempt.o

librt.o

MyApplication

and more…

standard libs
musl.o

libnewlibc.o
libopenssl.o

1) Library Pool

libkvmplat.o liblinuxuplat.o

libmipsarch.o

libxenplat.o

Select/create
application

1

S
el

ec
t

an
d

co
n

fi
g

u
re

 li
b

ra
ri

es

2

B
u

ild
3

R
u

n
4

myapp_xen_x86-64 myapp_kvm_x86-64 myapp_bare_arm64 etc.

13 © NEC Corporation 2019

Example System

▌Python Unikernel for KVM on x86_64

liblwip.o

libkvmplat.o libx86_64arch.o

libvfscore.o

liballocbbuddy.o

libmicropython.o

libschedcoop.o

My Python App

Unikernel

14 © NEC Corporation 2019

2) Build Tool

▌KConfig based and Makefile “Magic”
▌Type “make menuconfig”
lChoose options in the menu that you want for your application
lChoose your target platform(s), e.g., Xen, KVM, bare-metal, Linux

▌Save your config and type “make”

15 © NEC Corporation 2019

An Baseline Example…

▌Xen PV x86_64 binary
▌Compiles to a 32.7kB image

▌Boots and prints messages to debug console (with min. 208kB RAM)

libnolibc.o

libukboot.o

libukdebug.o

libxenplat.o

unikraft_xen-x86_64.o (50,2kB)

unikraft_xen-x86_64
(32,7kB)

Final
linking

Unikraft 0.3 Iapetus

Upcoming Release

17 © NEC Corporation 2019

Supported Features

▌Target support
lXen: x86_64, Arm32
lKVM: x86_64, Arm64
lLinux userspace: x86_64, Arm32
lBare-metal: x86_64 (with KVM target)

▌Core Functionality
lCooperative scheduler
lBinary buddy heap

▌Networking
lLow-level API for high-speed I/O
• virtio-net

lTCP/IP stack: Lightweight IP (lwIP)

▌Filesystems
lVFS

▌Libc’s
lnolibc (Unikraft internal)
lNewlib

18 © NEC Corporation 2019

Roadmap
▌Concentrating effort on:
lCompleting Arm64 support
• (Virtual) Device drivers for Arm platforms
•Other platforms

lMore standard libraries
•musl, libuv, zlib, openssl, libunwind, libaxtls (TLS), etc.

lLanguage environments
• Javascript (v8), Python, Ruby, C++, etc.

lOCI container target support

lFilesystems
• In-RAM and (Virtual) Disk filesystems

lNetwork drivers
• Xen (netfront), Linux (tap)

lFrameworks:
•Node.js, PyTorch, Intel DPDK, etc.

It is Open Source!

We need you!

20 © NEC Corporation 2019

▌Unikraft is OpenSource since Dec 2017 and under the umbrella of

▌Community is growing!
lActive contributors rose 91%, from 2 contributors to 23.

▌External contributors from
lRomania: networking, scheduling; from University Politechnica Bucharest
lIsrael: bare-metal support, VGA driver
lChina: Arm64 support from Arm

Join Us!

…but there is still a lot to do!
Get in touch with us!
Drop us a mail

minios-devel@lists.xen.org
Join our IRC channel

#unikraft on Freenode

mailto:minios-devel@lists.xen.org

Example

Demo Time

22 © NEC Corporation 2019

Unikraft Resources

▌Wiki
lhttps://wiki.xenproject.org/ (Search for Unikraft)
▌Documentation
lhttp://www.unikraft.org
▌Sources (GIT)
lhttp://xenbits.xen.org/gitweb/ (Namespace: Unikraft)
▌Mailing list (shared with Mini-OS)
lminios-devel@lists.xen.org
▌IRC Channel on Freenode
l#unikraft
▌NEC-Team
lhttp://sysml.neclab.eu

https://wiki.xenproject.org/
http://www.unikraft.org/
http://xenbits.xen.org/gitweb/
mailto:minios-devel@lists.xen.org
http://sysml.neclab.eu/

