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FPGA?
● Programmable digital logic
● Typical basic elements are look-up-tables and D-

flipflops; connected by programmable switches
● Configured by a bitstream which sets all this up
● Most FPGA development uses closed-source 

tools, FPGA vendors don’t document bitstreams
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ECP5 FPGA
● Up to 85k logic cells (LUT4+carry+FF)
● Up to 3.7Mb block RAM (in 18Kb blocks), 156 

18x18 DSPs
● Available with 3Gbps or 5Gbps SERDES for 

PCIe, USB 3.0, etc
● Single-quantity pricing starts from $5 (“12k” LE)
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ECP5 Architecture
● Split up into tiles of different types. Logic tiles split into 4 slices
● Slice: 2 LUT + 2FF; carry + 2FF; 16x2 RAM + 2FF; also cascade 

muxes
● Fixed interconnect wires
● Arcs connect wires together and are configurable or fixed (aka 

pip)
● All arcs and wires are unidirectional – mux topology
● Dedicated global clock network connects to all tiles



5

ECP5 Architecture
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ECP5 Architecture
Logic tiles contain both
logic and interconnect

CIB tiles contain interconnect 
for non-logic functions

MIB tiles contain non-logic 
functionality (EBR, DSP, IO, 
etc)

More than one tile at a 
location is possible!
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ECP5 Architecture



8

Current Status
● Bit and routing documentation for almost all 

functionality (missing: obscure DSP modes)
● Timing documentation for fabric, logic cells, IO 

and BRAM
● Timing-driven Yosys & nextpnr flow supporting 

majority of functionality
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Database
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DatabaseNormalised netname
Nominal position is x+3

Frame 104, bit 9
inside tile
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Database
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Database
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Text Configuration
● Need to make use of & test fuzz results
● Tools to convert bitstreams to/from a text config 

format
● Check that output is logical for simple designs
● Check for unknown bits in larger designs
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Text Configuration
.tile R53C71:PLC2
arc: A1 W1_H02E0701
arc: A3 H02E0701
arc: A4 H02E0501
arc: A5 V00B0000
arc: A7 W1_H02E0501
arc: B0 S1_V02N0301
arc: S3_V06S0303 W3_H06E0303
arc: W1_H02W0401 V02S0401
word: SLICEA.K0.INIT 1100110000000000
word: SLICEA.K1.INIT 1010101000000000
enum: SLICEA.CCU2.INJECT1_0 NO
enum: SLICEA.CCU2.INJECT1_1 NO
enum: SLICEA.D0MUX 1
enum: SLICEA.D1MUX 1
enum: SLICEA.MODE CCU2
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Timing
● Need to know how large internal delays are to 

determine if a design can work at a given frequency
● Like bitstream format, not enough vendor 

documentation
● Delays for cells (LUTs, etc) extracted from SDF files
● Interconnect delays determined using least-squares 

linear fit
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Yosys
● Verilog RTL Synthesis Framework
● Support for multiple FPGA families (ECP5, iCE40, 

Xilinx, ...) and ASIC synthesis
● Uses Berkley ABC for logic optimisation
● Formal equivalence checking and assertion verification
● Plus much more!
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nextpnr
● New open source multi-architecture place and 

route tool
● Development started early May
● Aimed primarily at real silicon (unlike VPR)
● Timing driven throughout 
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nextpnr
● Architectures in nextpnr implement an API 

rather than providing fixed data files
● Choose how you store the device database 

based on device size and external constraints
● Custom packer and other functions can be 

architecture-provided
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nextpnr Arch API
● Blackbox ID types: BelId, WireId, PipId
● getBels(), getPips(), getWires(), getPipsUphill(wire): 

return “some kind of range” of BelId, PipId, etc
● Range must implement begin(), end()
● Iterators must implement ++, *, !=
● Could be anything from a std::vector to custom walker of 

a deduplicated database!
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nextpnr Arch API
● Arch code stored in its own folder, different 

binary for each arch built
● Enables heavy compile-time optimisation and 

arch-specific types compared to virtual 
functions

● Avoids n² build complexity of C++ templates
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nextpnr
● Support for iCE40 and ECP5 FPGAs
● Very experimental 7-series support with 

Torc/XDL
● Future “generic” architecture will allow building 

FPGA using Python API
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nextpnr
● Started over the summer with “blank canvas” PnR – 

SA placer and vaguely A*+ripup router
● Now working on improvements including path-based 

timing-driven detail placement; analytical placer; 
SAT-based packing/initial placer….

● Python API for extensions, constraints, custom 
manipulations, algorithm prototyping
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nextpnr
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Trellis: https://github.com/SymbiFlow/prjtrellis

Data: https://symbiflow.github.io/prjtrellis-db/

Yosys: https://github.com/YosysHQ/yosys

nextpnr: https://github.com/YosysHQ/nextpnr

Slides: https://ds0.me/fosdem19.pdf

Links

https://github.com/SymbiFlow/prjtrellis
https://symbiflow.github.io/prjtrellis-db/
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/nextpnr
https://ds0.me/fosdem19.pdf
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