
1

Project Trellis & nextpnr
FOSS Tools for ECP5 FPGAs

David Shah
@fpga_dave

Symbiotic EDA || Imperial College London

2

FPGA?
● Programmable digital logic
● Typical basic elements are look-up-tables and D-

flipflops; connected by programmable switches
● Configured by a bitstream which sets all this up
● Most FPGA development uses closed-source

tools, FPGA vendors don’t document bitstreams

3

ECP5 FPGA
● Up to 85k logic cells (LUT4+carry+FF)
● Up to 3.7Mb block RAM (in 18Kb blocks), 156

18x18 DSPs
● Available with 3Gbps or 5Gbps SERDES for

PCIe, USB 3.0, etc
● Single-quantity pricing starts from $5 (“12k” LE)

4

ECP5 Architecture
● Split up into tiles of different types. Logic tiles split into 4 slices
● Slice: 2 LUT + 2FF; carry + 2FF; 16x2 RAM + 2FF; also cascade

muxes
● Fixed interconnect wires
● Arcs connect wires together and are configurable or fixed (aka

pip)
● All arcs and wires are unidirectional – mux topology
● Dedicated global clock network connects to all tiles

5

ECP5 Architecture

Logic

DSP

RAM

SERDES

IO

Clock Taps

Clock
Muxes

6

ECP5 Architecture
Logic tiles contain both
logic and interconnect

CIB tiles contain interconnect
for non-logic functions

MIB tiles contain non-logic
functionality (EBR, DSP, IO,
etc)

More than one tile at a
location is possible!

7

ECP5 Architecture

8

Current Status
● Bit and routing documentation for almost all

functionality (missing: obscure DSP modes)
● Timing documentation for fabric, logic cells, IO

and BRAM
● Timing-driven Yosys & nextpnr flow supporting

majority of functionality

9

Database

10

DatabaseNormalised netname
Nominal position is x+3

Frame 104, bit 9
inside tile

11

Database

12

Database

13

Text Configuration
● Need to make use of & test fuzz results
● Tools to convert bitstreams to/from a text config

format
● Check that output is logical for simple designs
● Check for unknown bits in larger designs

14

Text Configuration
.tile R53C71:PLC2
arc: A1 W1_H02E0701
arc: A3 H02E0701
arc: A4 H02E0501
arc: A5 V00B0000
arc: A7 W1_H02E0501
arc: B0 S1_V02N0301
arc: S3_V06S0303 W3_H06E0303
arc: W1_H02W0401 V02S0401
word: SLICEA.K0.INIT 1100110000000000
word: SLICEA.K1.INIT 1010101000000000
enum: SLICEA.CCU2.INJECT1_0 NO
enum: SLICEA.CCU2.INJECT1_1 NO
enum: SLICEA.D0MUX 1
enum: SLICEA.D1MUX 1
enum: SLICEA.MODE CCU2

15

Timing
● Need to know how large internal delays are to

determine if a design can work at a given frequency
● Like bitstream format, not enough vendor

documentation
● Delays for cells (LUTs, etc) extracted from SDF files
● Interconnect delays determined using least-squares

linear fit

16

Yosys
● Verilog RTL Synthesis Framework
● Support for multiple FPGA families (ECP5, iCE40,

Xilinx, ...) and ASIC synthesis
● Uses Berkley ABC for logic optimisation
● Formal equivalence checking and assertion verification
● Plus much more!

17

nextpnr
● New open source multi-architecture place and

route tool
● Development started early May
● Aimed primarily at real silicon (unlike VPR)
● Timing driven throughout

18

nextpnr
● Architectures in nextpnr implement an API

rather than providing fixed data files
● Choose how you store the device database

based on device size and external constraints
● Custom packer and other functions can be

architecture-provided

19

nextpnr Arch API
● Blackbox ID types: BelId, WireId, PipId
● getBels(), getPips(), getWires(), getPipsUphill(wire):

return “some kind of range” of BelId, PipId, etc
● Range must implement begin(), end()
● Iterators must implement ++, *, !=
● Could be anything from a std::vector to custom walker of

a deduplicated database!

20

nextpnr Arch API
● Arch code stored in its own folder, different

binary for each arch built
● Enables heavy compile-time optimisation and

arch-specific types compared to virtual
functions

● Avoids n² build complexity of C++ templates

21

nextpnr
● Support for iCE40 and ECP5 FPGAs
● Very experimental 7-series support with

Torc/XDL
● Future “generic” architecture will allow building

FPGA using Python API

22

nextpnr
● Started over the summer with “blank canvas” PnR –

SA placer and vaguely A*+ripup router
● Now working on improvements including path-based

timing-driven detail placement; analytical placer;
SAT-based packing/initial placer….

● Python API for extensions, constraints, custom
manipulations, algorithm prototyping

23

nextpnr

24

25

Trellis: https://github.com/SymbiFlow/prjtrellis

Data: https://symbiflow.github.io/prjtrellis-db/

Yosys: https://github.com/YosysHQ/yosys

nextpnr: https://github.com/YosysHQ/nextpnr

Slides: https://ds0.me/fosdem19.pdf

Links

https://github.com/SymbiFlow/prjtrellis
https://symbiflow.github.io/prjtrellis-db/
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/nextpnr
https://ds0.me/fosdem19.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

