
Who needs Pandoc
when you have
Sphinx?
An exploration of the parsers
and builders of the Sphinx
documentation tool

FOSDEM 2019

@stephenfin

https://fosdem.org/2019/schedule/event/sphinx/
https://github.com/stephenfin

reStructuredText,
Docutils &
Sphinx

1

A little reStructuredText
=========================

This document demonstrates some basic features of |rst|. You can use
bold and *italics*, along with ``literals``. It’s quite similar
to `Markdown`_ but much more extensible. CommonMark may one day
approach this [1]_, but today is not that day. `Docutils`__ does all
this for us.

.. |rst| replace:: **reStructuredText**

.. _Markdown: https://daringfireball.net/projects/markdown/

.. [1] https://talk.commonmark.org/t/444
__ http://docutils.sourceforge.net/

 💾 intro.rst

A little reStructuredText
=========================

This document demonstrates some basic features of |rst|. You can use
bold and *italics*, along with ``literals``. It’s quite similar
to `Markdown`_ but much more extensible. CommonMark may one day
approach this [1]_, but today is not that day. `Docutils`__ does all
this for us.

.. |rst| replace:: **reStructuredText**

.. _Markdown: https://daringfireball.net/projects/markdown/

.. [1] https://talk.commonmark.org/t/444
__ http://docutils.sourceforge.net/

 💾 intro.rst

A little reStructuredText

This document demonstrates some basic features of reStructuredText. You can use
bold and italics, along with literals. It’s quite similar to Markdown but much more
extensible. CommonMark may one day approach this [1], but today is not that day.

Docutils does all this for us.

[1] https://talk.commonmark.org/t/444/

 💾 intro.html

https://daringfireball.net/projects/markdown/
http://rst.ninjs.org/?theme=basic#id2
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/
http://rst.ninjs.org/?theme=basic#id1
https://talk.commonmark.org/t/444/

A little more reStructuredText
==============================
The extensibility really comes into play with directives and
roles. We can do things like link to RFCs (:RFC:`2324`, anyone?)
or generate some more advanced formatting (I do love me some
H\ :sub:`2`\ O).

.. warning::

 The power can be intoxicating.

Of course, all the stuff we showed previously *still works!* The
only limit is your imagination/interest.

 💾 more.rst

A little more reStructuredText
==============================
The extensibility really comes into play with directives and
roles. We can do things like link to RFCs (:RFC:`2324`, anyone?)
or generate some more advanced formatting (I do love me some
H\ :sub:`2`\ O).

.. warning::

 The power can be intoxicating.

Of course, all the stuff we showed previously *still works!* The
only limit is your imagination/interest.

 💾 more.rst

A little more reStructuredText

The extensibility really comes into play with directives and roles. We can do things

like link to RFCs (RFC 2324, anyone?) or generate some more advanced formatting
(I do love me some H

2
O).

Warning
The power can be intoxicating.

Of course, all the stuff we showed previously still works! The only limit is your
imagination/interest.

 💾 more.html

http://tools.ietf.org/html/rfc2324.html

reStructuredText provides the syntax

Docutils provides the parsing and file generation

reStructuredText provides the syntax

Docutils provides the parsing and file generation

Sphinx provides the cross-referencing

Docutils use readers, parsers, transforms, and writers

Docutils works with individual files

Docutils use readers, parsers, transforms, and writers

Docutils works with individual files

Sphinx uses readers, parsers, transforms, writers and builders

Sphinx works with multiple, cross-referenced files

How Does Docutils
Work?

2

About me
========

Hello, world. I am **bold** and *maybe* I am brave.

 💾 index.rst

$ rst2html index.rst

About me

Hello, world. I am bold and maybe I am brave.

 💾 index.html

index.rst index.html

$ rst2pseudoxml index.rst

<document ids="about-me" names="about\ me" source="index.rst"
title="About me">

<title>
About me

<paragraph>
Hello, world. I am

bold
and
<emphasis>

maybe
I am brave.

 💾 index.xml

$./docutils/tools/quicktest.py index.rst

<document source="index.rst">
<section ids="about-me" names="about\ me">

<title>
About me

<paragraph>
Hello, world. I am

bold
and
<emphasis>

maybe
I am brave.

 💾 index.xml

Readers (reads from source and passes to the parser)

Parsers (creates a doctree model from the read file)

Transforms (add to, prune, or otherwise change the doctree model)

Writers (converts the doctree model to a file)

Readers (reads from source and passes to the parser)

Parsers (creates a doctree model from the read file)

Transforms (add to, prune, or otherwise change the doctree model)

Writers (converts the doctree model to a file)

What About
Sphinx?

3

About me
========

Hello, world. I am **bold** and *maybe* I am brave.

 💾 index.rst

master_doc = 'index'

 💾 conf.py

$ sphinx-build -b html . _build

About me

Hello, world. I am bold and maybe I am brave.

 💾 index.html

Readers (reads from source and passes to the parser)

Parsers (creates a doctree model from the read file)

Transforms (add to, prune, or otherwise change the doctree model)

Writers (converts the doctree model to a file)

Builders (call the readers, parsers, transformers, writers)

Application (calls the builder(s))

Environment (store information for future builds)

Builders (call the readers, parsers, transformers, writers)

Application (calls the builder(s))

Environment (store information for future builds)

...
updating environment: 1 added, 0 changed, 0 removed
reading sources... [100%] index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
generating indices... done
writing additional pages... done
copying static files... done
copying extra files... done
dumping search index in English (code: en) ... done
dumping object inventory... done
build succeeded.

Docutils provides almost 100 node types

document
section
title

subtitle
paragraph

block_quote
bullet_list

note
...

(the root element of the document tree)
(the main unit of hierarchy for documents)
(stores the title of a document, section, ...)
(stores the subtitle of a document)
(contains the text and inline elements of a single paragraph)
(used for quotations set off from the main text)
(contains list_item elements marked with bullets)
(an admonition, a distinctive and self-contained notice)
...

Sphinx provides its own custom node types

translatable
not_smartquotable

toctree
versionmodified

seealso
productionlist

manpage
pending_xref

...

(indicates content which supports translation)
(indicates content which does not support smart-quotes)
(node for inserting a "TOC tree")
(version change entry)
(custom "see also" admonition)
(grammar production lists)
(reference to a man page)
(cross-reference that cannot be resolved yet)
...

Docutils provides dozens of transforms

DocTitle
DocInfo
SectNum
Contents
Footnotes
Messages

SmartQuotes
Admonitions

...

(promote title elements to the document level)
(transform initial field lists to docinfo elements)
(assign numbers to the titles of document sections)
(generate a table of contents from a document or sub-node)
(resolve links to footnotes, citations and their references)
(place system messages into the document)
(replace ASCII quotation marks with typographic form)
(transform specific admonitions to generic ones)
...

Sphinx also provides additional transforms

MoveModuleTargets
AutoNumbering

CitationReferences
SphinxSmartQuotes
DoctreeReadEvent

ManpageLink
SphinxDomains

Locale
...

(promote initial module targets to the section title)
(register IDs of tables, figures and literal blocks to assign numbers)
(replace citation references with pending_xref nodes)
(custom SmartQuotes to avoid transform for some extra node types)
(emit doctree-read event)
(find manpage section numbers and names)
(collect objects to Sphinx domains for cross referencing)
(replace translatable nodes with their translated doctree)
...

Using Additional
Parsers

4

There are a number of parsers available

reStructuredText (part of docutils)

Markdown (part of recommonmark)

Jupyter Notebooks (part of nbsphinx)

About me

Hello, world. I am **bold** and *maybe* I am brave.

 💾 index.md

$ cm2html index.md

About me

Hello, world. I am bold and maybe I am brave.

 💾 index.html

$ cm2pseudoxml index.md

<document ids="about-me" names="about\ me" source="index.md"
title="About me">

<title>
About me

<paragraph>
Hello, world. I am

bold
and
<emphasis>

maybe
I am brave.

 💾 index.xml

About me

Hello, world. I am **bold** and *maybe* I am brave.

 💾 index.md

from recommonmark.parser import CommonMarkParser

master_doc = 'index'

source_parsers = {'.md': CommonMarkParser}
source_suffix = '.md'

 💾 conf.py

from recommonmark.parser import CommonMarkParser

master_doc = 'index'

source_parsers = {'.md': CommonMarkParser}
source_suffix = '.md'

 💾 conf.py

$ sphinx-build -b html . _build

About me

Hello, world. I am bold and maybe I am brave.

 💾 index.html

Using Additional
Writers, Builders

5

Docutils provides a number of in-tree writers

docutils_xml
html4css1
latex2e
manpage

null
odf_odt
pep_html
pseudoxml

...

(simple XML document tree Writer)
(simple HTML document tree Writer)
(LaTeX2e document tree Writer)
(simple man page Writer)
(a do-nothing Writer)
(ODF Writer)
(PEP HTML Writer)
(simple internal document tree Writer)
...

$ rst2html5 index.rst

from docutils.core import publish_file
from docutils.writers import html5_polyglot

with open('README.rst', 'r') as source:
publish_file(source=source,

 writer=html5_polyglot.Writer())

$ pip install rst2txt

$ rst2txt index.rst

from docutils.core import publish_file
from rst2txt

with open('README.rst', 'r') as source:
publish_file(source=source,

 writer=rst2txt.Writer())

html
qthelp
epub
latex
text
man

texinfo
xml
...

(generates output in HTML format)
(like html but also generates Qt help collection support files)
(like html but also generates an epub file for eBook readers)
(generates output in LaTeX format)
(generates text files with most rST markup removed)
(generates manual pages in the groff format)
(generates textinfo files for use with makeinfo)
(generates Docutils-native XML files)
...

Sphinx provides its own in-tree builders

$ sphinx-build -b html . _build

$ pip install sphinx-asciidoc

$ sphinx-build -b asciidoc . _build

Writing Your Own
Parsers, Writers

6

Reading (reads from source and passes to the parser)

Parsing (creates a doctree model from the read file)

Transforming (applies transforms to the doctree model)

Writing (converts the doctree model to a file)

from docutils import parsers

class Parser(parsers.Parser):
 supported = ('null',)
 config_section = 'null parser'
 config_section_dependencies = ('parsers',)

 def parse(self, inputstring, document):
 pass

 💾 docutils/parsers/null.py

We’re not covering Compilers 101

We’re not covering Compilers 101

We’re going to cheat 😄

<?xml version="1.0" encoding="utf-8"?>
<document source="index.rst">

<section ids="about-me" names="about\ me">
<title>About me</title>
<paragraph>Hello, world. I am bold and
<emphasis>maybe</emphasis> I am brave.</paragraph>

</section>
</document>

 💾 index.xml

from docutils import parsers
import xml.etree.ElementTree as ET

class Parser(parsers.Parser):
 supported = ('xml',)
 config_section = 'XML parser'
 config_section_dependencies = ('parsers',)

 def parse(self, inputstring, document):
 xml = ET.fromstring(inputstring)
 self._parse(document, xml)

 ...

 💾 xml_parser.py

 ...

 def _parse(self, node, xml):
 for attrib, value in xml.attrib.items():

 # NOTE(stephenfin): this isn't complete!
 setattr(node, attrib, value)

 for child in xml:
 child_node = getattr(nodes, child.tag)(text=child.text)
 node += self._parse(child_node, child)

 if xml.tail:
 return node, nodes.Text(xml.tail)
 return node

 💾 xml_parser.py

Reading (reads from source and passes to the parser)

Parsing (creates a doctree model from the read file)

Transforming (applies transforms to the doctree model)

Writing (converts the doctree model to a file)

from docutils import writers

class Writer(writers.Writer):
 supported = ('pprint', 'pformat', 'pseudoxml')
 config_section = 'pseudoxml writer'
 config_section_dependencies = ('writers',)
 output = None

 def translate(self):
 self.output = self.document.pformat()

 💾 docutils/writers/pseudoxml.py

from docutils import writers

class Writer(writers.Writer):
 supported = ('pprint', 'pformat', 'pseudoxml')
 config_section = 'pseudoxml writer'
 config_section_dependencies = ('writers',)
 output = None

 def translate(self):
 self.output = self.document.pformat()

 💾 docutils/writers/pseudoxml.py

from docutils import nodes, writers

class TextWriter(writers.Writer):
 supported = ('text',)
 config_section = 'text writer'
 config_section_dependencies = ('writers',)
 output = None

 def translate(self):
 visitor = TextTranslator(self.document)
 self.document.walkabout(visitor)
 self.output = visitor.body

 💾 rst2txt/writer.py

from docutils import nodes, writers

class TextWriter(writers.Writer):
 supported = ('text',)
 config_section = 'text writer'
 config_section_dependencies = ('writers',)
 output = None

 def translate(self):
 visitor = TextTranslator(self.document)
 self.document.walkabout(visitor)
 self.output = visitor.body

 💾 rst2txt/writer.py

...

class TextTranslator(nodes.NodeVisitor):
 ...

 def visit_document(self, node):
 pass

 def depart_document(self, node):
 pass

 def visit_section(self, node):
 pass

 💾 rst2txt/writer.py

from sphinx.builders import Builder

class TextBuilder(Builder):
 name = 'text'

 def __init__(self):
 pass

 def get_outdated_docs(self):
 pass

 def get_target_uri(self):
 pass

 💾 sphinx/builders/text.py

 ...

 def prepare_writing(self, docnames):
 pass

 def write_doc(self, docnames, doctree):
 pass

 def finish(self):
 pass

 💾 sphinx/builders/text.py

Wrap Up

6

Sphinx and Docutils share most of the same architecture…

Readers

Parsers

Transforms

Writers

…but Sphinx builds upon and extends Docutils’ core functionality

Builders

Application

Environment

There are multiple writers/builders provided by both…

HTML

Manpage

LaTeX

XML

texinfo (Sphinx only)

ODF (Docutils only)

...

...and many more writers/builders available along with readers

Markdown (reader and builder)

Text (writer)

ODF (builder)

AsciiDoc (builder)

EPUB2 (builder)

reStructuredText (builder)

...

It’s possible to write your own

It’s possible to write your own

Fin

🎉

Who needs Pandoc
when you have
Sphinx?
An exploration of the parsers
and builders of the Sphinx
documentation tool

FOSDEM 2019

@stephenfin

https://fosdem.org/2019/schedule/event/sphinx/
https://github.com/stephenfin

Useful Packages and Tools
● recommonmark (provides a Markdown reader)
● sphinx-markdown-builder (provides a Markdown builder)
● sphinx-asciidoc (provides an AsciiDoc builder)
● rst2txt (provides a plain text writer)
● asciidoclive.com (online AsciiDoc Editor)
● rst.ninjs.org (online rST Editor)

https://pypi.org/project/recommonmark/
https://pypi.org/project/sphinx-markdown-builder/
https://pypi.org/project/sphinx-asciidoc/
https://pypi.org/project/rst2txt/
https://asciidoclive.com/
http://rst.ninjs.org/

References
● Quick reStructuredText
● Docutils Reference Guide

○ reStructuredText Markup Specification

○ reStructuredText Directives

○ reStructuredText Interpreted Text Roles

● Docutils Hacker’s Guide
● PEP-258: Docutils Design Specification

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html
http://docutils.sourceforge.net/docs/ref/rst/roles.html
http://docutils.sourceforge.net/docs/dev/hacking.html
http://docutils.sourceforge.net/docs/peps/pep-0258.html#docutils-project-model

References
● A brief tutorial on parsing reStructuredText (reST) -- Eli Bendersky
● A lion, a head, and a dash of YAML -- Stephen Finucane (🌟)
● OpenStack + Sphinx In A Tree -- Stephen Finucane (🌟)
● Read the Docs & Sphinx now support Commonmark -- Read the Docs Blog

https://eli.thegreenplace.net/2017/a-brief-tutorial-on-parsing-restructuredtext-rest/
https://speakerdeck.com/stephenfin/a-lion-a-head-and-a-dash-of-yaml
https://speakerdeck.com/stephenfin/openstack-plus-sphinx-in-a-tree
http://blog.readthedocs.com/adding-markdown-support/

