
03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 1/32

Solo5: A sandboxed, re-targetable
execution environment for unikernels

Dan Williams (IBM Research), djwillia@us.ibm.com
Martin Lucina (robur.io / CCT), martin@lucina.net
Ricardo Koller (IBM Research), kollerr@us.ibm.com

FOSDEM 2019, Microkernel and Component-based OS devroom

1 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 2/32

Background: LibOS and unikernels
Library operating systems

A collection of libraries providing traditional OS functionality.
No concept of process isolation.
Generally use co-operative scheduling.

... these are combined at compile time with application code into a unikernel.

Unikernels

Minimal code size, minimal attack surface.
Single-purpose, single-application operating system.
Perceived as something that must run in kernel space.

2 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 3/32

What is Solo5? (I)

unikernel

host

Solo5

3 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 4/32

unikernel

host

Solo5

What is Solo5? (II)
1. A minimalist, legacy-free interface.

2. Bindings to this interface for:

microkernels (Genode), separation kernels
(Muen)
virtio-based hypervisors
monolithic kernels (Linux, FreeBSD, OpenBSD)

3. On monolithic kernels a tender is used to strongly sandbox the unikernel:

hvt: hardware virtualized tender
spt: sandboxed process tender

4 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 5/32

What is Solo5? (III)
From the libOS point of view:

"Middleware".
Integrated into the libOS build system.
The developer does not interact with Solo5 directly.

Example, for MirageOS:

mirage configure -t {hvt | spt | muen | genode | ...}
make depend && make

Builds a unikernel for your target of choice.

5 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 6/32

Solo5 compared
Solo5 compared to common isolation interfaces and units of execution:

host

unikernel

VM

host host

container

Solo5

(From left to right: Solo5, traditional VMs, Linux containers)

6 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 7/32

Philosophy of Solo5 (I)
The interface must be:

1. Minimal.
2. Stateless.
3. Portable.

The implementation must:

Do one thing and do it well:
Be an engine for running unikernels.

Orchestration, configuration management, monitoring, etc. are done
elsewhere.

7 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 8/32

Philosophy of Solo5 (II)
Minimal

Simplest useful abstraction.
Not Linux!

No "device discovery" at run time.

Leads to:

Small implementation size:
Typical configuration: ~3 kLOC.
12 kLOC in total (all combinations!).

Clarity of implementation.
Fast startup time:

Solo5 hvt/spt: < 50 ms
qemu Linux VM: ~ 1000 ms
Cloud-managed VMs: Seconds.

8 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 9/32

Philosophy of Solo5 (III)
Stateless

Very little state in the interface itself:

Guest cannot change host state:
No dynamic resource allocation.

Host cannot change guest state:
No interrupts.

Results in a system that:

Is deterministic and easy to reason about.
Is static.
Enables strong isolation:

On monolithic and component-based / high assurance systems.

9 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 10/32

Philosophy of Solo5 (IV)
Portable

Easy to port libOS to Solo5:

MirageOS (Ocaml-based), IncludeOS (C++), Rumprun (NetBSD).

Easy to port Solo5 to new targets:

OpenBSD vmm, Muen Separation Kernel, Genode OS framework.
Contributed by folks who are not Solo5 "experts".

10 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 11/32

Solo5: Limitations
Minimal

Does not run Linux applications.
But, there are POSIX-ish libOSes (Rumprun, LKL) that do.

Stateless

"No interrupts" implies single core.
Not intended for interfacing to hardware.
Drivers are "some other component's" problem.

Portable

Performance (copying semantics, number of "calls per IOP").
Not intended for HPC or millions of PPS.

11 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 12/32

The Solo5 interface (I)
struct solo5_start_info {
 const char *cmdline;
 uintptr_t heap_start;
 size_t heap_size;
}
int solo5_app_mainsolo5_app_main(const struct solo5_start_info *info) /* entry point */

void solo5_exitsolo5_exit(int status)
void solo5_abortsolo5_abort(void)

void solo5_console_writesolo5_console_write(const char *buf, size_t size)

solo5_time_t solo5_clock_monotonicsolo5_clock_monotonic()
solo5_time_t solo5_clock_wallsolo5_clock_wall()

bool solo5_yieldsolo5_yield(solo5_time_t deadline)

12 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 13/32

The Solo5 interface (II)
bool solo5_yieldsolo5_yield(solo5_time_t deadline)

typedef enum {
 SOLO5_R_OK, SOLO5_R_AGAIN, SOLO5_R_EINVAL, SOLO5_R_EUNSPEC
} solo5_result_t

solo5_result_t solo5_block_readsolo5_block_read(solo5_off_t offset, uint8_t *buf, size_t size)
solo5_result_t solo5_block_writesolo5_block_write(solo5_off_t offset, const uint8_t *buf, size_t size)
void solo5_block_infosolo5_block_info(struct solo5_block_info *info)

solo5_result_t solo5_net_readsolo5_net_read(uint8_t *buf, size_t size, size_t *read_size)
solo5_result_t solo5_net_writesolo5_net_write(const uint8_t *buf, size_t size)
void solo5_net_infosolo5_net_info(struct solo5_net_info *info)

13 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 14/32

(Demo: Solo5 in action)

14 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 15/32

unikernel

Linux/KVM
FreeBSD vmm
OpenBSD vmm

hvt: "Hardware virtualized tender" (I)
Uses hardware virtualization as an isolation layer.

KVM, FreeBSD (Bhyve), OpenBSD (vmm).

Not a traditional VMM:

10 hypercalls.
Modular, typical configuration ~1.5 kLOC.
Compare QEMU: ~1000 kLOC, crosvm: ~100 kLOC.

Supports x86_64 and arm64 architectures.

Mature implementation, around since 2015.

Formerly known as ukvm.

15 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 16/32

unikernel

Linux/KVM
FreeBSD vmm
OpenBSD vmm

hvt: "Hardware virtualized tender" (II)
Loads the unikernel.
Sets up host resources.
Sets up VCPU, page tables.
Handles guest hypercalls (VMEXITs).

16 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 17/32

unikernel

Linux/KVM
FreeBSD vmm
OpenBSD vmm

hvt: Hypercalls
Hybrid PIO/MMIO-like approach.
Transfer a 32-bit pointer to a struct.

On x86_64:

static inline void hvt_do_hypercall(int n, volatile void *arg)
{
 __asm__ __volatile__("outl %0, %1"
 :
 : "a" ((uint32_t)((uint64_t)arg)),
 "d" ((uint16_t)(HVT_HYPERCALL_PIO_BASE + n))
 : "memory");
}

On arm64:

static inline void hvt_do_hypercall(int n, volatile void *arg)
{
 __asm__ __volatile__("str %w0, [%1]"
 :
 : "rZ" ((uint32_t)((uint64_t)arg)),
 "r" ((uint64_t)HVT_HYPERCALL_ADDRESS(n))
 : "memory");
}

17 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 18/32

unikernel

Linux/KVM
FreeBSD vmm
OpenBSD vmm

hvt: Bindings
Implement the Solo5 interface:

Using hypercalls to tender.
Handle VCPU trap vectors.

Which just "report and abort".
Provide monotonic time.

Via RDTSC or equivalent.

solo5_result_t solo5_net_write(const uint8_t *buf, size_t size)
{
 volatile struct hvt_netwrite wr;

 wr.data = buf;
 wr.len = size;
 wr.ret = 0;

 hvt_do_hypercall(HVT_HYPERCALL_NETWRITE, &wr);

 return (wr.ret == 0 && wr.len == size) ? SOLO5_R_OK : SOLO5_R_EUNSPEC;
}

18 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 19/32

unikernel

Linux
(seccomp)

spt: "Sandboxed process tender" (I)
Uses process isolation with seccomp-BPF as an
isolation layer.

The system call filter is a strict whitelist.
~7 system calls needed for the entire Solo5
interface.

Should be possible to port to other kernels.

FreeBSD: Capsicum.
OpenBSD: pledge(2).

See our ACM SoCC 2018 paper:

https://dl.acm.org/citation.cfm?id=3267845

19 / 31

https://dl.acm.org/citation.cfm?id=3267845

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 20/32

unikernel

Linux
(seccomp)

spt: "Sandboxed process tender" (II)
Loads the unikernel.
Sets up host resources.
Applies the seccomp-BPF sandbox.

Effectively ceases to exist!

Treats the monolithic kernel as a hypervisor!

20 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 21/32

unikernel

Linux
(seccomp)

spt: Bindings
Implement the Solo5 interface:

By directly invoking system calls.
No libclibc involved.

solo5_result_t solo5_net_write(const uint8_t *buf, size_t size)
{
 assert(netfd >= 0);

 long nbytes = sys_write(netfd, (const char *)buf, size);

 return (nbytes == (int)size) ? SOLO5_R_OK : SOLO5_R_EUNSPEC;
}

Supports x86_64 and arm64.
Trivial to add more architectures.

21 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 22/32

unikernel

Muen

muen: Native component
Muen: An x86_64 Separation Kernel for High
Assurance.

Guarantees that components communicate
exclusively according to given security policy.
Isolation using hardware virtualization.
Implemented in ADA/SPARK.
Formally proven to contain no runtime errors at the source code level.
Open Source, https://muen.sk/.

Solo5 bindings shared with hvt:

No hypercalls.
Communication via shared memory rings.

22 / 31

https://muen.sk/

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 23/32

unikernel

hypervisor
+ VMM

virtio: Cloud hypervisors
The first Solo5 implementation.
No longer consistent with our philosophy:

Still too much legacy in interface.
2.5 kLOC, and still not complete.
Anyone for SCSI?

But, runs on existing cloud hypervisors:
e.g. Google Compute Engine.

23 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 24/32

Debugging

Just use gdb!
(1) $ solo5-hvt --gdb test_hello.hvt
...
(2) $ gdb --ex="target remote localhost:1234" test_hello.hvt

24 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 25/32

Lessons learned (I)
Usable modularity

Wanted a tender that is specialized to the unikernel.
Original hvt approach:

Specialize at unikernel compile time.
This is not practical:

Supply chain is wrong.
Removed for spt.

25 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 26/32

Lessons learned (II)
Usable modularity

We still want to enforce a contract (tender/unikernel).

unikernel wants A, B, C.
tender must match or refuse to run.
tender must not accidentally provide D.

Embed a "manifest" into the unikernel:

Enforce at run time.
Can we still specialize the tender?

26 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 27/32

Future: Plans and challenges (I)
Security

Implement more best practices:

ASLR (static PIE), SSP, W^X.
Undocumented ABIs.
hvt: Hypervisor support lacking.

EPT mprotect

Defense in depth:

Further de-privilege tenders.
Initial setup stage runs with full privileges.

27 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 28/32

Future: Plans and challenges (II)
Portability

Can we do dynamic linking safely?
Leads to a tender-independent unikernel binary.

Performance

Can we define an interface that allows asynchronicity, yet is consistent
with our philosophy? (Minimal, Stateless, Portable).

28 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 29/32

Future: Ideas
More languages and libOS

Go, Rust, ...
Further validation of the Solo5 interface.

More targets

Mac OS Hypervisor.framework.
Secure enclaves (e.g. SGX).

Architecture independence

Webassembly as a target.
Build once, run on any CPU architecture.

29 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 30/32

Related work
Library operating systems

MSR Drawbridge
Graphene

Lightweight VMs

kvmtool, qemu-lite
novm
crosvm
Firecracker

Securing the Linux interface

gVisor

30 / 31

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 31/32

Conclusion
Minimalism!

Tiny API (13 functions), legacy-free. ISC licensed.
Low resource usage. Run 1500 VMs on your 3 year old laptop.

Apply unikernels everywhere!

Linux, FreeBSD, OpenBSD, Muen, Genode, Cloud, ...

No compromises!

Strong isolation on all targets.

https://github.com/Solo5/solo5
31 / 31

https://github.com/Solo5/solo5

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 32/32

