Solo5: A sandboxed, re-targetable

execution environment for un

Dan Williams (IBM Research), djwillia@us.i

iRernels

pm.com

Martin Lucina (robur.io / CCT), martin@lucina.net

Ricardo Koller (IBM Research), kollerr@us.i

Dm.com

FOSDEM 2019, MicroRernel and Component-based 0S devroom

1/31

Background: Lib0S and unikernels

Library operating systems

* A collection of libraries providing traditional OS functionality.
e No concept of process isolation.
* Generally use co-operative scheduling.

... these are combined at compile time with application code into a unikernel.

Unikernels

e Minimal code size, minimal attack surface.
e Single-purpose, single-application operating system.
e Perceived as something that must run in kernel space.

2 /31

What is Solo5? (1)

unikernel

3/31

What is Solo5? (If)

1. A minimalist, legacy-free interface.

unikernel

2. Bindings to this interface for:

o microkernels (Genode), separation kernels
(Muen)

o virtio-based hypervisors

o monolithic kernels (Linux, FreeBSD, OpenBSD)

3. On monolithic kernels a tender is used to strongly sandbox the unikernel:

o hvt: hardware virtualized tender
o spt: sandboxed process tender

4/31

What is Solo5? (1ll)

From the 1ibOS point of view:

e "Middleware".
e Integrated into the libOS build system.
e The developer does not interact with Solo5 directly.

Example, for MirageOS:

mirage configure -t {hvt | spt | muen | genode | ...}
make depend && make

Builds a unikernel for your target of choice.

5/31

Solo5 compared

Solo5 compared to common isolation interfaces and units of execution:

unikernel :
container

host

(From left to right: Solo5, traditional VMs, Linux containers)

6/31

Philosophy of Solo5 (1)

The interface must be:

1. Minimal.
2. Stateless.
3. Portable.

The implementation must:

e Do one thing and do it well:
o Be an engine for running unikernels.
e Orchestration, configuration management, monitoring, etc. are done
elsewhere.

7/31

Philosophy of Solo5 ()

Minimal

e Simplest useful abstraction.
o Not Linux!
e No "device discovery" at run time.

Leads to:

¢ Small implementation size:
o Typical configuration: ~3 KLOC.

o 12 kKLOC in total (all combinations!).

e Clarity of implementation.
e Fast startup time:
o Solo5 hvt/spt: <50 ms
o gemu Linux VM: ~ 1000 ms
o Cloud-managed VMs: Seconds.

8/31

Philosophy of Solo5 (ll)

Stateless

Very little state in the interface itself:

e Guest cannot change host state:

o No dynamic resource allocation.
e Host cannot change guest state:

o No interrupts.

Results in a system that:

e [s deterministic and easy to reason about.

* [s static.
e Enables strong isolation:
o On monolithic and component-based / high assurance systemes.

9/31

Philosophy of Solo5 (IV)

Portable

Easy to port libOS to Solo5:
e MirageOS (Ocaml-based), IncludeOS (C++), Rumprun (NetBSD).
Easy to port Solo5 to new targets:

e OpenBSD vimm, Muen Separation Kernel, Genode OS framework.
e Contributed by folks who are not Solo5 "experts".

10/ 31

Solo5: Limitations

Minimal

e Does not run Linux applications.
e But, there are POSIX-ish 1libOSes (Rumprun, LKL) that do.

Stateless

e "No interrupts" implies single core.
e Not intended for interfacing to hardware.
e Drivers are "some other component's" problem.

Portable

e Performance (copying semantics, number of "calls per IOP").

o Not intended for HPC or millions of PPS.

11/31

The Solo5 interface(|)

struct solo5_start_info {
const char *cmdline;
uintptr_t heap_start;
size_t heap size;
int solo5_app_main(const struct solo5_start_info *info) /* entry point */

void solo5_exit(int status)
void solo5_abort(void)

void solo5_console_write(const char *buf, size t size)

solo5_time_t solo5_clock_monotonic()
solo5_time_t solo5_clock_wall()

bool solo5_yield(solo5_time_t deadline)

12 /31

The Solo5 interface (|l)

bool solo5_yield(solo5 time_t deadline)

typedef enum {
SOLO5_R_OK, SOLO5 R _AGAIN, SOLO5 R _EINVAL, SOLO5_R_EUNSPEC
} solo5_result_t

solo5_result_t solo5_block_read(solo5 off t offset, uint8 t *buf, size t size)
solo5_result_t solo5_block_write(solo5 off_t offset, const uint8_t *buf, size t size)
void solo5_block_info(struct solo5 block_info *info)

solo5 _result_t solo5_net_read(uint8 t *buf, size t size, size_ t *read_size)

solo5_result_t solo5_net_write(const uint8_t *buf, size_ t size)
void solo5_net_info(struct solo5 net_info *info)

13/31

(Demo: Solo5 in action)

14 /31

hvt: "Hardware virtualized tender” (1)

Uses hardware virtualization as an isolation layer.

unikernel

o KVM, FreeBSD (Bhyve), OpenBSD (vimm).

Not a traditional VMM:

Linux/KVM
FreeBSD vmm
OpenBSD vmm

o 10 hypercalls.
o Modular, typical configuration ~1.5 KLOC.
o Compare QEMU: ~1000 KLOC, crosvm: ~100 kLOC.

Supports x86_64 and armé4 architectures.

Mature implementation, around since 2015.

o Formerly known as ukvm.

15/31

hvt: "Hardware virtualized tender” (lI)

Loads the unikernel.

Sets up host resources.

Sets up VCPU, page tables.

Handles guest hypercalls (VMEXITS).

unikernel

16 /31

hvt: Hypercalls

e Hybrid PIO/MMIO-like approach.
e Transfer a 32-bit pointer to a struct.

unikernel

On x86_64:

Linux/KVM
FreeBSD vmm

static inline void hvt_do_hypercall(int n, volatile void *arg) OpenBSD vmm

{

asm__ _ volatile_ ("outl %0, %1"

¢ "a" ((uint32_t)((uint64_t)arg)),
"d" ((uint16_t)(HVT_HYPERCALL_PIO BASE + n))
: "memory");

}
On armé4:

static inline void hvt_do_hypercall(int n, volatile void *arg)

{

asm__ _ volatile__("str %wo, [%1]"

:"rz" ((uint32_t)((uint64_t)arg)),
"r" ((uint64_t)HVT_HYPERCALL_ADDRESS(n))
: "memory");

17/ 31

hvt: Bindings

Implement the Solo5 interface:

unikernel

e Using hypercalls to tender.
e Handle VCPU trap vectors.

o Which just "report and abort".
e Provide monotonic time.

o Via RDTSC or equivalent.

Linux/KVM
FreeBSD vmm
OpenBSD vmm

solo5 result_t solo5 net write(const uint8_ t *buf, size t size)

{

volatile struct hvt_netwrite wr;

wr.data = buf;

wr.len = size;

wr.ret = 0;

hvt_do_hypercall(HVT_HYPERCALL_NETWRITE, &wr);

return (wr.ret == 0 && wr.len == size) ? SOLO5 R _OK : SOLO5 R _EUNSPEC;
}

18 /31

spt: “Sandboxed process tender” (1)

e Uses process isolation with seccomp-BPF as an
isolation layer.

unikernel

o The system call filter is a strict whitelist.
o ~7 system calls needed for the entire Solo5
interface.

Linux
(seccomp)

e Should be possible to port to other kernels.

o FreeBSD: Capsicum.
© OpenBSD: pledge(2).

¢ See our ACM SoCC 2018 paper:

o https://dl.acm.org/citation.cfm?id=3267845

19/31

https://dl.acm.org/citation.cfm?id=3267845

spt: “Sandboxed process tender” ()

Loads the unikernel.
Sets up host resources.
Applies the seccomp-BPF sandbox.

unikernel

Effectively ceases to exist!

Treats the monolithic kernel as a hypervisor!

20/ 31

spt: Bindings

Implement the Solo5 interface:

unikernel

e By directly invoking system calls.
e No libc involved.

Linux
(seccomp)

solo5 result_t solo5 net_write(const uint8_t *buf, size t size)

{
assert(netfd >= 0);

long nbytes = sys_write(netfd, (const char *)buf, size);

return (nbytes == (int)size) ? SOLO5 R _OK : SOLO5 R _EUNSPEC;

* Supports x86_64 and armé64.
e Trivial to add more architectures.

21/31

muen: Native component

Muen: An x86_64 Separation Kernel for High p—
Assurance.

e Guarantees that components communicate
exclusively according to given security policy.
Isolation using hardware virtualization.
Implemented in ADA/SPARK.

Formally proven to contain no runtime errors at the source code level.

Open Source, https://muen.sk/.

Muen

Solo5 bindings shared with hvt:

e No hypercalls.
e Communication via shared memory rings.

22 /31

https://muen.sk/

virtio: Cloud hypervisors

e The first Solo5 implementation.

e No longer consistent with our philosophy:
o Still too much legacy in interface.
o 2.5 KLOC, and still not complete.
o Anyone for SCSI?

e But, runs on existing cloud hypervisors:
o e.g. Google Compute Engine.

unikernel

hypervisor
+ VMM

23 /31

Debugging
Just use gdb!

(1) $ solo5-hvt --gdb test_hello.hvt

&é; $ gdb --ex="target remote localhost:1234" test_hello.hvt

24 /31

Lessons learned ()

Usable modularity

e Wanted a tender that is specialized to the unikernel.
e Original hvt approach:
o Specialize at unikernel compile time.
o This is not practical:
= Supply chain is wrong.
e Removed for spt.

25/31

Lessons learned ()

Usable modularity

e We still want to enforce a contract (tender/unikernel).

o unikernel wants A, B, C.
o tender must match or refuse to run.
o tender must not accidentally provide D.

e Embed a "manifest" into the unikernel:

o Enforce at run time.
o Can we still specialize the tender?

26 /31

Future: Plans and challenges (1)

Security

Implement more best practices:

e ASLR (static PIE), SSP, WAX.
o Undocumented ABIs.
o hvt: Hypervisor support lacking.
= EPT mprotect

Defense in depth:

e Further de-privilege tenders.
 Initial setup stage runs with full privileges.

27131

Future: Plans and challenges (II)

Portability

e Can we do dynamic linking safely?
e Leads to a tender-independent unikernel binary.

Performance

e Can we define an interface that allows asynchronicity, yet is consistent
with our philosophy? (Minimal, Stateless, Portable).

28 /31

Future: Ideas

More languages and lib0S

¢ GO, Rust, ...

o Further validation of the Solo5 interface.

More targets

e Mac OS Hypervisor.framework.
e Secure enclaves (e.g. SGX).

Architecture independence

* Webassembly as a target.

o Build once, run on any CPU architecture.

29 /31

Related work

Library operating systems

e MSR Drawbridge
e Graphene

Lightweight VMs

e kvmtool, gemu-lite
e novim

e crosvim

e Firecracker

Securing the Linux interface

e gVisor

30/31

Conclusion

Minimalism!

e Tiny API (13 functions), legacy-free. ISC licensed.
e Low resource usage. Run 1500 VMs on your 3 year old laptop.

Apply unikernels everywhere!

e Linux, FreeBSD, OpenBSD, Muen, Genode, Cloud, ...

No compromises!

e Strong isolation on all targets.

https://github.com/Solo5/solo5

31/31

https://github.com/Solo5/solo5

03/02/2019 Solo5: A sandboxed, re-targetable execution environment for unikernels

http://localhost:8000/talk.html#3 32/32

