
Protect your Bits: An 
introduction to gr-fec

FOSDEM ‘19, Free Software Radio Devroom
Martin Braun

Representin’ Ettus Research & GNU Radio 



▪ In the 1940s, Shannon came up with most of the theory we 

use these days for wireless communications

▪ The Shannon-Hartley Theorem

gives a hard upper bound on how

much data  can be transmitted over

a point-to-point link (with AWGN interference)

▪ It doesn’t say how, though!

Forward Error Correction 101

(1) C.E. Shannon, “Communication in the Presence of Noise”, January 1949



▪ I’ll make sure they get uploaded to the FOSDEM website, if 

they’re not part of the tree

▪ I used maint-3.7 for this stuff. As of now, pre-3.8 has some 

issues with the GRC examples, (e.g., no bus ports) and I’m 

not going to risk this talk to test master branch... 

GRC Examples for this Talk



▪ So can we just transmit below the Shannon limit?

▪ uncoded.grc

▪ We’re more than

a factor of 3 away

from Shannon’s

limit

Let’s try without coding!



▪ Let’s enable those disabled blocks

▪ All our decoder can do is get the sign of the bits, but noise 

will statistically ruin those

▪ Looks like our transceiver

chain was not sufficiently

complicated!

What went wrong?



▪ As good ol’ Claude says, we need to make our 

transceivers “sufficiently complicated”

▪ Core tenet of all FECs: Add more stuff in a

structured fashion!

▪ Receivers can tell if a received sequence

▪                                                       “makes sense”

Let’s add Redundancy

▪ More bits! (“Code Rate equals 7/4”)

▪ Different bits (“unsystematic”)



▪ Systematic codes: Codes that contain the uncoded data

▪ Latency: Coding/Decoding can incur additional processing 

latency

▪ Interleaving/Concatenation: We might combine multiple 

codes in a smart way for additional benefits

▪ Coding gain: The actual advantage of using a code vs. 

transmitting uncoded data

▪ Puncturing: After adding redundancy, we can remove some 

of the bits again to scale the coding rate

Concepts of FEC

(This is where I fast-forward over several semesters worth of information)



▪ Satcom

▪ Low SNR, AWGN, small variances in SNR

▪ CD/DVD Drives

▪ High SNR, bursty errors,

▪ Your LTE phone

▪ Everything is bonkers, multi-path, Doppler, fading..

Examples of FEC Applications



▪ Convolutional Codes (802.11a)

▪ Turbo Codes (LTE)

▪ Hamming Codes (Usually the first code you learn in school)

▪ POLAR Codes (5G NR)

▪ BCH Codes (CD/DVD Players)

▪ Reed-Muller, Reed-Solomon, ...

▪ There’s many.

Noteworthy Codes



▪ gr-fec usually builds out-of-the-box with GNU Radio

▪ Use -DENABLE_GR_FEC=ON to be certain

▪ Requires VOLK

▪ gr-fec has a bunch of great examples, let’s check them out!

▪ Let’s start with fecapi_decoders.grc

Enter gr-fec



▪ Data streaming blocks are separate from the

FEC implementations

▪ Blocks match the type of streaming model,

the kernel matches the FEC that is requested

Blocks and Kernels



▪ All blocks come in an “extended” variety: Added Python 

sugar for easier integration -> Use this in GRC unless you 

really know what you’re doing!

▪ Regular Encoder: Infinite-stream

▪ Async Encoder: For message passing

applications

▪ Tagged Encoder: For (the beloved)

Tagged Stream Blocks

Block Types



▪ Encoder Blocks consume and produce 

unpacked bits

▪ Decoder Blocks consume “soft bits” and 

produce unpacked bits

▪ Puncturing / Depuncturing is handled by the (extended) 

block (not the kernel)

▪ FEC blocks can be parallelized, the extended encoder will 

spawn multiple identical blocks in parallel

Block Settings & Functions



▪ Dummy & Repetition Kernels for debugging and comparison

▪ Convolutional Codes

▪ LDPC Codes (various different implementations)

▪ Turbo Product Code

▪ POLAR Codes (various 

implementations)

▪

Available Kernels



▪ Let’s check out polar_code_example.grc

▪ (Reminder: POLAR codes used in 5G NR control channels)

Running gr-fec in the wild



▪ It’s debatable if GNU Radio is the right tool to do BER 

simulations, but you can test the capabilities of the kernels

▪ Unlike your typical scripted simulation, GNU Radio runs 

multiple AWGN channels at once

▪ Note: All of these examples require bus ports, which are 

broken on 3.8/master as of 31-Jan-2019 (please halp fix?)

▪ Note 2: There’s also a berawgn.py example, which does 

something else. Go check it out if you like.

BER Simulations



▪ It’s still debatable if GNU Radio is 

the right tool to do BER 

simulations

▪ Make sure you interpret the 

results correctly! ES != EB. Low bit 

rates are hard to simulate.

BER Simulations



▪ Thanks to Nick McCarthy for originally coming up with 

FECAPI (which became gr-fec)

▪ Johannes Demel, Manu TS, Tracy Perez, Tim O’Shea, Tom 

Rondeau: Noteworthy contributor of codes

▪ GRCon ‘16: SOCIS + POLAR Codes (J. Demel)

▪ GRCon’ 16: POLAR Codes at hundreds of MBit/s (P. Giard)

Pay our Respects!

https://www.youtube.com/watch?v=D49RKQRwe_Y&list=PLbBQHMnVMR41WSEeX3wEn2gzybt7_GcQJ&index=10
https://www.youtube.com/watch?v=t30MUGaKkwE&list=PLbBQHMnVMR43_qQaetTkAeaLNu7RTNLup&index=8


▪ FEC is the good kind of redundancy

▪ Let’s stay modular -- let’s re-use codes and set them free

▪ FEC is a critical and difficult part of wireless links. Having 

good, free implementations for those 

in GNU Radio is important for 

controlling our PHYs

▪ Join us in adding codes! We

need to make them faster, and

add more codes.

Final Words




