Equinox: A C+4++11 platform for realtime SDR
applications

FOSDEM 2019

Manolis Surligas

surligas@csd.uoc.gr
Libre Space Foundation & Computer Science Department, University of Crete

mailto:surligas@csd.uoc.gr

Introduction

Software Radio Platforms

e Every SDR needs a software platform

e The platform is responsible for:
e Orchestration and scheduling of processing tasks

e Data management and transfer

e Provide set of commonly used processing tasks

e The platform can be application specific or generic

Software Radio Platforms

Application specific platforms:

V' Tend to outperform the generic platforms

v They adapt better to the computational requirements
v Low latency

X No code re-use

X Less flexibility, longer development times

Software Radio Platforms

Generic platforms:
v" All in one solution
v_ Reusable, flexible and extensible
v’ Fast development cycles
v’ Effort on the algorithm not at the platform

V' Visual Programming Language (VPL) interface - better
designs

X Latency

Software Radio Platforms

Generic Purpose SDR platforms: The VPL paradigm

e Each processing task is represented with a graphical block
e Connections represent data transfers

e Executable is auto-generated based on the design

Existing SDR Platforms

e GNU Radio
e LabView
e Matlab Simulink

e Pothos-SDR

Note!
All of these platforms are VPL based

Software Radio Platforms

Generic Purpose SDR platforms: The VPL paradigm

Low Pass Filter
g:fr"'“: fion:10 Rational Resampler
Sample Rate: 111 WBFM Receive Interpotation: 43
Cutoff Freg: 100k Quadrature Rate: 100k Decimation: 100
Transition Width: 10k Audio Decimation: 1 T
Window: Hamming
Beta: 6.7

UHD: USRP Source
Samp Rate (Sps): 1M

[[] cno: Center Freq (Hz): 101.5M
Cho: Gain Value: 35

Ch: Antenna: RX2

Audio Sink Multiply Const
Sample Rate: 48k Constant: 1

GNU Radio FM receiver application in 30 seconds!

The Equinox SDR Platform

e Equinox is a C4++11 based SDR platform

e Based on message passing rather than streaming

Goals

e Generic platform ﬂ
Extendable via plugins ‘

Adapt to application requirements

Proper handling of bursty transmissions

Reduce latency

Why C++117?

e Modern, fast, complete

Range based loops

Shared pointers

Integrated threading library

Bye-bye Boost!!!

Architecture

Equinox
® Memory Management ® Math ® QT5
o Graph analysis L] D.SP.
® Scheduling o Filtering
e Load balancing ® FFT
® etc

Memory Management

e NO dynamic memory allocation
e Memory pools with pre-allocated memory

e Each output port holds a memory pool

Mem Pool 1

Mem Pool 0

Msg 3
Msg 2
Msg 1
Msg 0

Msg 22 Kernel 0
Msg 21

Msg 20

10

Memory Management

e Kernels exchange messages of fixed size

e Each message is a std::shared_ptr pointer to a memory
location at the memory pool

e Each output port is a message queue holding message pointers
e No memory copy, just pass the pointers (Zero-Copy)

e Automatic garbage collection, through the std::shared_ptr
based messages

11

Equinox: Graph analysis & Load balancing

e Platforms like GNU Radio, follow a one-thread-per-block

approach

e This is fine, as soon as the number of blocks is small

e Modern telecommunications systems require a large number
of processing tasks
e E.g IEEE 802.11 transceiver has about 40 blocks

e Thread synchronization, preemption and cache misses
overhead starts to exceed the actual computation

12

Graph analysis & Load balancing

Equinox tries to balance these overheads

e Use minimum number of threads

Exploit graph topology

Assign efficiently the processing tasks into the available

worker threads

13

Graph analysis & Load balancing

e The first task is to identify the connected components of the
graph

e Use a slightly altered version of the DFS

e Different components should be assigned to different workers
to avoid indirect data dependencies

Worker 1
Worker 1 ;

Kernel A Kernel B Kernel C
Kernel B Kernel C : ; ;

[Kernel A
[Kernel M }—-{ Kernel N] [el H genel }

Worker 0 ' Worker 0

14

Graph analysis & Load balancing

e Then split the graph into N sub-graphs, where N is the
number of workers

e Equinox provides different ways to split the graph

e The most interesting is the spectral method

e Split the graph based on the eigenvalues of the adjacency
matrix

e Minimizes the connections between sub-graphs

| eqnx:core:load_balancer |

i
|

egnx:core:load_balancer_spectral [eqnx::core::lnad_halancer_unifnrm

eqgnx:core:load_balancer_simple

ii5)

Scheduling

e The Equinox platform has two different scheduler types

e Inner Scheduler: Operates for every worker
e QOuter Scheduler: Orchestrates the deployed inner schedulers

e Support of different inner schedulers through templates

e Currently we use the Round Robin inner scheduler

16

Scheduling

User
programm

Graph analysis
- Connected components
- Load balancing

- Connections management
- Message queues assignment

Workload
assignment

[Worker 0 [Worker 1] 000 [Worker N-1 Worker N
Scheduler 0 Scheduler 1 | ==+ |Scheduler N-1 Scheduler N
Execution Execution 000 Execution Execution

17

Scheduling

Thread #0 Thread #1

Thread #3 Thread #2
e #Threads == #Cores
o > Virtual data connection 18

e —>: Shared memory connection

Delay comparison

of blocks GNU Radio Equinox

4 55 58

105 81
12 131 59
16 158 67
24 262 189
32 378 182
48 2795 220
64 9384 233
72 16958 242
96 67716 268

Table 1: Delay comparison on i7-2600K @ 3.4 GHz

19

User interface

Fle Edit Project
ReBX

Availale Toolboxes
v~ template
< templatel
* template2

template

View Help

(LN RO)

template
2 paramt: test

" param: 5

~ This fong vaue
ﬂ template 8
" paramsest]

Lot s i

Param2: 35

This I a very long abel: This a fong value:

template

Parami: test

This i a very long label: This a ong vaue:

A simple program

connection_graph::sptr graph = connection_graph::make_shared ();
testing::isource::sptr a = testing::source::make_shared ("source_a");
testing::in_out::sptr b = testing::in_out::make_shared ("b");

= testing::in_out::make_shared ("c");
testing::sink::make_shared ("sink d");

testing::in_out::sptr
testing::sink::sptr d

nooo

graph->add_connection ((*a)["out0"] >> (*b)["in0"]);
graph->add_connection ((*b)["out®"] >> (*c)["in0"]);
graph->add_connection ((*c)["out@"] >> (*d)["in0"]);

d_os = new outer_sched<load_balancer_spectral, inner_sched_rr>(1, graph);
d_os->start();

21

A simple program

void

sourceiiexec- ()

{
/% Get-an-output -message for the port-out® port-=/
msg::sptrem-=-new_msg- ("outd");
f*-Do-stuff-and-copy-result-to-the-message buffer-=/
memcpy - (m->raw_ptr- (), &I _cnt, sizeof(d_cnt));
/*Produce-a-message - =/
write: ("out@", m);

}

22

Other applications?

Is Equinox only for SDR applications?
e Audio processing

e Video processing

e Handle frames as messages ©

e Network applications

e Packet tagging
e Filtering
e DPI

23

Join the party!

https://gitlab.com/equinox-sdr/equinox

https://gitlab.com/equinox-sdr/equinox

Questions?

	Introduction
	The Equinox SDR Platform

