
Equinox: A C++11 platform for realtime SDR applications

Equinox: A C++11 platform for realtime SDR

applications

FOSDEM 2019

Manolis Surligas

surligas@csd.uoc.gr
Libre Space Foundation & Computer Science Department, University of Crete

mailto:surligas@csd.uoc.gr

Introduction

Software Radio Platforms

• Every SDR needs a software platform

• The platform is responsible for:

• Orchestration and scheduling of processing tasks

• Data management and transfer

• Provide set of commonly used processing tasks

• The platform can be application specific or generic

1

Software Radio Platforms

Application specific platforms:

X Tend to outperform the generic platforms

X They adapt better to the computational requirements

X Low latency

× No code re-use

× Less flexibility, longer development times

2

Software Radio Platforms

Generic platforms:

X All in one solution

X Reusable, flexible and extensible

X Fast development cycles

X Effort on the algorithm not at the platform

X Visual Programming Language (VPL) interface : better

designs

× Latency

3

Software Radio Platforms

Generic Purpose SDR platforms: The VPL paradigm

• Each processing task is represented with a graphical block

• Connections represent data transfers

• Executable is auto-generated based on the design

4

Existing SDR Platforms

• GNU Radio

• LabView

• Matlab Simulink

• Pothos-SDR

Note!

All of these platforms are VPL based

5

Software Radio Platforms

Generic Purpose SDR platforms: The VPL paradigm

GNU Radio FM receiver application in 30 seconds!

6

The Equinox SDR Platform

Equinox

• Equinox is a C++11 based SDR platform

• Based on message passing rather than streaming

Goals

• Generic platform

• Extendable via plugins

• Adapt to application requirements

• Proper handling of bursty transmissions

• Reduce latency

7

Equinox

Why C++11?

• Modern, fast, complete

• Range based loops

• Shared pointers

• Integrated threading library

• Bye-bye Boost!!!

8

Architecture

Equinox

Core Kernels GUI

Math
DSP
Filtering
FFT
etc

Memory Management

Scheduling
Graph analysis

Load balancing

QT5

9

Memory Management

• NO dynamic memory allocation

• Memory pools with pre-allocated memory

• Each output port holds a memory pool

Kernel 0

Kernel 1 Kernel 2

Msg 0

Mem Pool 1

Msg 1

Msg 2

Msg 3

Msg 20

Mem Pool 0

Msg 21

Msg 22

10

Memory Management

• Kernels exchange messages of fixed size

• Each message is a std::shared ptr pointer to a memory

location at the memory pool

• Each output port is a message queue holding message pointers

• No memory copy, just pass the pointers (Zero-Copy)

• Automatic garbage collection, through the std::shared ptr

based messages

11

Equinox: Graph analysis & Load balancing

• Platforms like GNU Radio, follow a one-thread-per-block

approach

• This is fine, as soon as the number of blocks is small

• Modern telecommunications systems require a large number
of processing tasks

• E.g IEEE 802.11 transceiver has about 40 blocks

• Thread synchronization, preemption and cache misses

overhead starts to exceed the actual computation

12

Graph analysis & Load balancing

• Equinox tries to balance these overheads

• Use minimum number of threads

• Exploit graph topology

• Assign efficiently the processing tasks into the available

worker threads

13

Graph analysis & Load balancing

• The first task is to identify the connected components of the

graph

• Use a slightly altered version of the DFS

• Different components should be assigned to different workers

to avoid indirect data dependencies

Kernel A Kernel B Kernel C

Kernel M Kernel N

Worker 0

Worker 1

Kernel A Kernel B Kernel C

Kernel M Kernel N

Worker 0

Worker 1

14

Graph analysis & Load balancing

• Then split the graph into N sub-graphs, where N is the

number of workers

• Equinox provides different ways to split the graph

• The most interesting is the spectral method

• Split the graph based on the eigenvalues of the adjacency

matrix

• Minimizes the connections between sub-graphs

15

Scheduling

• The Equinox platform has two different scheduler types

• Inner Scheduler: Operates for every worker

• Outer Scheduler: Orchestrates the deployed inner schedulers

• Support of different inner schedulers through templates

• Currently we use the Round Robin inner scheduler

16

Scheduling

User
programm

Graph analysis
- Connected components

- Load balancing

Workload
assignment

Worker 0 Worker 1 Worker N-1 Worker N...

Scheduler 0 Scheduler 1 Scheduler N-1 Scheduler N...

Execution Execution Execution Execution...

- Connections management

- Message queues assignment

17

Scheduling

...

Kernel #0 Kernel #1

Kernel #2

Thread #0 Thread #1

Kernel #X Kernel #X+1

Thread #3 Thread #2

Kernel #YKernel #Z

...

#Threads == #Cores
: Virtual data connection
: Shared memory connection

Inner
scheduler

Inner
scheduler

Inner
scheduler

Inner
scheduler

Outer
Scheduler

18

Delay comparison

of blocks GNU Radio Equinox

4 55 58

8 105 81

12 131 59

16 158 67

24 262 189

32 378 182

48 2795 220

64 9384 233

72 16958 242

96 67716 268

Table 1: Delay comparison on i7-2600K @ 3.4 GHz

19

User interface

20

A simple program

21

A simple program

22

Other applications?

Is Equinox only for SDR applications?

• Audio processing

• Video processing

• Handle frames as messages ©

• Network applications

• Packet tagging

• Filtering

• DPI

23

Join the party!

https://gitlab.com/equinox-sdr/equinox

23

https://gitlab.com/equinox-sdr/equinox

Questions?

23

	Introduction
	The Equinox SDR Platform

