GObject subclassing In
Rust for extending
GTK+ & GStreamer

Or: How to safely implement subclassing in Rust
while making use of a C library

FOSDEM 2019
3 February 2019, Brussels

Sepastian 'slomo’ Droge
< sebastian@centricular.com >

mailto:sebastian@centricular.com

Who?

What?

Subclassing or inheritance in Rust like
in traditional OOP

But Rust does not support this!

But Object Oriented
Programming sucks!

... Or not?

So... why?

OOP is everywhere

Almost every major language is based on
traditional OOP

It would be a shame to not be able to make use of
all that existing code

We don't want to rewrite the whole world
all at once!

So... why exactly?

Interoperability with other platforms

= E.g. GNOME/GStreamer or the HTML
DOM

Using existing OOP code/libraries

Extending OOP libraries from Rust code

Replacing existing libraries with Rust code

= RIIR! &

Rust is ideal for interoperability
with other platforms

GObject

e Clibrary for doing traditional OOP
= Classes, interfaces, inheritance, virtual
methods, RTTI, ...
= Close to Objective-C type system
e Used by GNOME, GTK+, GStreamer and a lot of
other code out there
e gobject-introspection! &)
= Automatic bindings for any* language
= A stable OOP API/ABI

Using GObject from Rust

First some example code

let window = gtk::Window: :new(gtk: :window: :Toplevel);
let button = gtk::Button::new();
button.set_label("test");

window.add(&button);

window.show_all();

How does it look
under the hood?

Objects

Conceptually like

struct Button(ptr::NonNull<gtk_ ffi::GtkButton>)

Clone/Drop: Reference counting

Behaves like an Rc<RefCell< >>

= |nterior mutability: This is OOP after
all!

m |[ncludes weak references

FFI « Rust translation infrastructure

1mpl blocks

e For constructors and static functions
only
= Or &self methods for final types
e Directly calls into C functions

pub fn new() -> Button {
unsafe { from_glib_none(ffi::gtk _button_new()) }

}

Ext traits

e Provide all &self methods

e Autogenerated
= ExtManual traits are manual

e Implemented generically for all types that
are
= subclasses or interface implementors

impl<T: IsA<Contalner>> ContainerkExt for T {
fn add<w: IsA<wWidget>>(&self, widget: &T) {
unsafe {
ffi::gtk_container_add(
self.as_ref().to_glib_none().0,
widget.as_ref().to_glib_none().0,

)

IsA<P> marker trait

e Provides the subclass/implements interface
relationship
m T: IsA<P>

e ImpliesT: AsRef<P>and T, P: ObjectType

e Always use this for generic functions!

fn foo<T: IsSA<P>>(f: &T) { ... }

ObjectType trait

Implemented by all Object types
Type-system mapping between Rust struct
and FFI types

Translation from/to raw pointer

Access to GObject type ID via StaticType
trait

Requires all kinds of convenience traits

Cast trait

e Safe zero-cost upcasting, almost-free
downcasting/dynamic casting
= Safe: Runtime type checks if needed
= Unsafe casts without checks

e WWorks via mem: :transmute()

= All Rust Object structs have the same
memory representation

button
.upcast::<gtk::wWidget>()
.downcast: :<gtk::Button>()
.expect("Not actually a button?");

Wrap-up

Ext traits for methods, 1mpl blocks for
constructors

= Mostly autogenerated

All usage safe Rust

Implicit upcasting, explicit downcasting

Boilerplate autogenerated via glib wrapper!

() macro

glib_wrapper!(

),

Object<Button, ffi::GtkButton,
ffi::GtkButtonClass, ButtonClass>
@extends Bin, Container, Widget, @implements Buildable

Code

If you want to look at the code yourself

e github.com/gtk-rs/gtk
m src/button. rs (if manual code was
necessary)
m src/auto/button.rs
e github.com/gtk-rs/glib
m src/object. rs for most of the infrastructure

https://github.com/gtk-rs/gtk
https://github.com/gtk-rs/glib

Creating GObject subclasses
from Rust

Generally

In the subclass module of glib/etc

crate

Compared to C

= | ess boilerplate, but still quite some

m Safer due to stronger type-system

= Equally low overhead

Lots of traits and generic functions again
Might require unsafe code &

ObjectSubclass trait

Mirror of ObjectType trait

Type-mapping for FFI structs, type name

Registration, class and instance initialization

Translation from instance to impl type

= Publicgtk: :Button vs. private Button
impl

= The trait is implemented on private impl

Example

impl ObjectSubclass for MyObject {
const NAME: &'static str = "MyObject",
type ParentType = glib::0bject;

type Instance = subclass::simple::InstanceStruct<Self>;
type Class = subclass::simple::ClassStruct<Self>;

glib_object_subclass!();
fn class_init(klass: &mut Self::Class) { }

fn new() -> Self {
Self { ... }
¥

Instance and Class structs

Has the parent type's as the first field

Instance has public instance fields

Class is basically the vtable

= Function pointers for virtual methods

= Defining new virtual methods requires unsafe
@

Empty ones available generically

m See previous slide

IsClassFor & IsSubclassable
traits

e Mapping from instance to class type (vtable!)
e TsSubclassable overrides virtual methods
= C/Rust translation functions for each virtual
method
= Happens during class initialization
automatically
= Map to functions on the Impl trait

Example virtual method
C/Rust translation function

unsafe extern "C" fn constructed<T: ObjectSubclass + ObjectImpl>

(
obj: *mut gobject_ffi::GObject

) {
let instance = &*(obj as *mut T::Instance);
let imp = instance.get_impl();

imp.constructed(&from_glib_borrow(obj));

}

Class-specific Impl traits

e Provide impls for virtual methods
= Default impls for functions if optional
= Functions to call into the parent impl

e FooImpl requires BarImpl for enforcing
subclass relationship

e This is where everything interesting happens
= You want to impl a Button? ButtonImpl!

Example Impl trait

pub trait ObjectImpl: 'static {
fn constructed(&self, obj: &Object) {
self.parent_constructed(obj);

}

fn parent_constructed(&self, obj: &0bject) {
unsafe {
let data = self.get_type_data();
let parent_class = data.as_ref().get_parent_class()
as *mut gobject_ffi::GObjectClass;

(*parent_class).constructed.as_ref().map(|func| {
func(obj.to_glib_none().0)

1)

Remarks about memory layout

e |[nstance struct has parent first

m Pointer can be casted
e Rusttype(glib::0bject, etc) uses this
e Impl struct is stored right before it

m Same allocation

= First base types, before that sub type

e No boxing or dynamic dispatch on the Rust
side

Type registration and instance
creation

e glib::0bject::new(T::get type(), &
[1)
m get type() registers type

e Useglib wrapper! around this if needed

Code

If you want to look at some code yourself

https://github.com/gtk-rs/glib

What else is possible?

GObject properties and signals are
supported

Virtual method definitions

Class methods

Interface impls and definitions
Boxed types

The Future

More autogeneration of the
C/Rust translation code

e A lot exists already

e But not for subclassing yet

e And not for various special
cases

Support for more classes

e Usage-wise almost all covered
e Subclassing: only GStreamer and very basic
otherwise

gobject-class procedural
macro

o Allows writing a C#/Rust-style language for
creating GObject subclasses
= Not ready yet but slowly getting there
= More convenient and removing more usage of
unsafe code &

Making use of all this to write
more things in Rust

Your chance to get involved!

e |ibrsvg
o GStreamer
plugins

e Your own ideas!

Thanks! Questions?

sebastian@centricular.com

