
Lessons Learned from Porting
HelenOS to RISC-V

Martin Děcký 
martin@decky.cz

February 2019



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 2

Who Am I

Passionate programmer and operating systems enthusiast

With a specific inclination towards multiserver microkernels

HelenOS developer since 2004

Research Scientist from 2006 to 2018

Charles University (Prague), Distributed Systems Research Group

Senior Research Engineer since 2017

Huawei Technologies (Munich), German Research Center, Central 
Software Institute, OS Kernel Lab





Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 4

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 5

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch

Custom microkernel
Custom user space
http://www.helenos.org

http://www.helenos.org/


Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 6

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch

3-clause BSD permissive license
https://github.com/HelenOS

https://github.com/HelenOS


Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 7

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch

Breath-first rather than depth-first
Potentially targeting server,
desktop and embedded



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 8

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch

IA-32 (x86), AMD64 (x86-64),
IA-64 (Itaninum), ARM, MIPS,
PowerPC, SPARCv9 (UltraSPARC)



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 9

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch

Fine-grained modular component architecture
No monolithic components even in user space



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 10

HelenOS in a Nutshell

open source general-purpose multiplatform 
microkernel multiserver operating system
designed and implemented from scratch

Architecture based on a set of guiding design principles
Asynchronous bi-directional IPC with rich semantics





Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 12

Motivation: Software Dependability

How HelenOS tries to achieve dependability?

Microkernel multiserver architecture based on design principles

Fundamental fault isolation (limiting the “blast radius”)

Explicit mapping between design and implementation

Clean, manageable, understandable and auditable source code

“Code is written once, but read many times”

Ratio of comments: 38 %
“Extremely well-commented source code” (Open Hub)

Work in progress: Formal verification



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 13

Motivation: Software Dependability

High-quality
architecture

High-quality
implementation

Verification
of correctness

Development
process



monolithic OS HelenOS



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 15

HelenOS Microkernel Functional Blocks

ar
ch

it
e

ct
u

re
 in

d
e

p
e

n
d

e
n

t

sh
ar

e
d

 a
rc

h
it

e
ct

u
re

d
e

p
e

n
d

e
n

t

ar
ch

it
e

ct
u

re
d

e
p

e
n

d
e

n
t

bootstrap
routines

CPU
mgmt

atomics
&

barriers

I/O
mgmt

platform
memory

mgmt

platform
drivers

debugging
support

context
switching

interrupt
handling

platform
library

routines

shared
platform
drivers

shared
debugging

support

hierarchical
page table

support

global page
hash table

support

hardware abstraction layer

kernel
unit
tests

memory
backends

memory
zones
mgmt

frame
allocator

slab
allocator

address
space
mgmt

memory
reservation

spinlocks

wait
queues

work
queues

interrupt &
syscall

dispatch

thread
scheduler

thread &
task

mgmt

kernel
lifecycle

mgmt

lists,
trees,

bitmaps

concurrent
hash
table

generic
resource
allocator

ELF
loader

string
routines

misc
routines

kernel
debug

console

IPC

kernel
log

hardware
resource

mgmt

system
information

cycle &
time

mgmt

tracing
support

read-
copy-

update

capabilities
cache

coherency

synchro-
nization
interface



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 16

HelenOS Logical Architecture

device
manager

device drivers

client
session

vterm bdsh

vfs

file system
drivers

FAT exFAT ext4

ISO 9660 UDF MINIX FS

TMPFS Location FS

kernel

naming
service

loader
task

monitor

klog
location
service

logger

init

transport
layer protocols

tcp udp

link layer
protocols

loopip ethip

slip

inetsrv

networking
management

dnsrsrv dhcp

nconfsrv

human interface

clipboard audio

outputinput

console compositor

remote
console

remote
framebuffer



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 17

HelenOS RISC-V Port Status

January 2016

Infrastructure, boot loader, initial virtual memory setup, kernel hand-off

Privileged ISA Specification version 1.7, toolchain support not upstreamed yet

Targeting Spike

18 hours net development time

Initial experience

Many things besides the ISA itself were not nicely documented (e.g. ABI, HTIF) 
and had to be reverse-engineered from Spike

Even some ISA details were sketchy (memory consistency model)

Generally speaking, the ISA itself looked nice (except the compressed page 
protection field)



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 18

HelenOS RISC-V Port Status (2)

August 2017

Basic kernel functionality (interrupt/exception handling, context 
switching, atomics, basic I/O)

Privileged ISA Specification version 1.10
Some minor improvements (e.g. more standard page protection bits)

Still targeting Spike
Observation: The HTIF input device has a horrible design

– No interrupts
– Polling requests are buffered

Still no decent “reference platform”

24 hours net development time





Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 20

HelenOS RISC-V Port Status (3)

January 2019

Towards user space support

Switching to QEMU virt target
Looks more reasonable than Spike
CLINT, PLIC, NS16550 UART, VirtIO

Toolchain support upstream

8 hours net development time



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 21

Lessons Learned

Suprisingly little interest in porting HelenOS to RISC-V

Compared to previous porting efforts to ARM, SPARCv9, SPARCv8, etc.

GSoC, master thesis, team software project to no avail

Possible reasons

Lack of feature-rich reference platform

Lack of easily available development board
A Raspberry Pi (USB, ethernet, HDMI, sound), but with a RISC-V CPU supporting 
the Supervisor mode

Despite RISC-V being a new major ISA, there is surprisingly little 
input from operating system research



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 22

Problem Statement

Microkernel design ideas go as back as 1969

RC 4000 Multiprogramming System nucleus (Per Brinch Hansen)

Isolation of unprivileged processes, inter-process communication, 
hierarchical control

There are obvious benefits of the design for safety, security, dependability, 
formal verification, etc.

Hardware and software used to be designed independently

Designing CPUs used to be an extremely complicated and costly process

Operating systems used to be written after the CPUs were designed

Hardware designs used to be rather conservative



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 23

Monolithic OS Design is Flawed

Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design Is 
Flawed: Microkernel-based Designs Improve Security, ACM 9th Asia-
Pacific Workshop on Systems (APSys), 2018

“While intuitive, the benefits of the small TCB have not been quantified to 
date. We address this by a study of critical Linux CVEs, where we examine 
whether they would be prevented or mitigated by a microkernel-based 
design. We find that almost all exploits are at least mitigated to less than 
critical severity, and 40 % completely eliminated by an OS design based 
on a verified microkernel, such as seL4.”



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 24

HelenOS IPC Example

client VFS

 

tmpfs

 

naming
service
naming
service



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 25

Where RISC-V Could Really Help?

Mainstream ISAs used to be designed in a rather conservative way

Can you name some really revolutionary ISA features since IBM 
System/370 Advanced Function?

Requirements on the new ISAs usually follow the needs of the 
mainstream operating systems running on the past ISAs

No wonder microkernels suffer performance penalties compared to 
monolithic systems

The more fine-grained the architecture, the more penalties it suffers

Let us design the hardware with microkernels in mind!



26Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V

Any Ideas?



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 27

Communication between Address Spaces

Control and data flow between subsystems

Monolithic kernel

Function calls
Passing arguments in registers and on the stack
Passing direct pointers to memory structures

Multiserver microkernel

IPC via microkernel syscalls
Passing arguments in a subset of registers
Privilege level switch, address space switch
Scheduling (in case of asynchronous IPC)
Data copying or memory sharing with page granularity



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 28

Communication between Address Spaces (2)

Is the kernel round-trip of the IPC necessary?

Suggestion for synchronous IPC: Extended Jump/Call and Return instructions 
that also switch the address space

Communicating parties identified by a “call gate” (capability) containing the target 
address space and the PC of the IPC handler (implicit for return)

Call gates stored in a TLB-like hardware cache (CLB)
CLB populated by the microkernel similarly to TLB-only memory management 
architecture

Suggestion for asynchronous IPC: Using CPU cache lines as the buffers for the 
messages

Async Jump/Call, Async Return and Async Receive instructions

Using the CPU cache like an extended register stack engine



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 29

Communication between Address Spaces (3)

Bulk data

Observation: Memory sharing is actually quite efficient for large amounts 
of data (multiple pages)

Overhead is caused primarily by creating and tearing down the shared 
pages

Data needs to be page-aligned

Sub-page granularity and dynamic data structures

Suggestion: Using CPU cache lines as shared buffers
Much finer granularity than pages (typically 64 to 128 bytes)
A separate virtual-to-cache mapping mechanism before the standard
virtual-to-physical mapping



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 30

Fast Context Switching

Current microsecond-scale latency hiding mechanisms

Hardware multi-threading

Effective

Does not scale beyond a few threads

Operating system context switching

Scales for any thread count

Too slow (order of 10 µs)

Goal: Finding a sweet spot between the two mechanisms



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 31

Fast Context Switching (2)

Suggestion: Hardware cache for contexts

Again, similar mechanism to TLB-only memory management

Dedicated instructions for context store, context restore, context switch, context 
save, context load

Context data could be potentially ABI-optimized

Autonomous mechanism for event-triggered context switch (e.g. external 
interrupt)

Efficient hardware mechanism for latency hiding

The equivalent of fine/coarse-grained simultaneous multithreading
The software scheduler is in charge of setting the scheduler policy
The CPU is in charge of scheduling the contexts based on ALU, cache and other resource
availability



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 32

User Space Interrupt Processing

Extension of the fast context switching mechanism

Efficient delivery of interrupt events to user space device drivers

Without the routine microkernel intervention

An interrupt could be directly handled by a preconfigured hardware context in 
user space

A clear path towards moving even the timer interrupt handler and the scheduler from 
kernel space to user space

Going back to interrupt-driven handling of peripherals with extreme low latency 
requirements (instead of polling)

The usual pain point: Level-triggered interrupts

Some coordination with the platform interrupt controller is probably needed
to automatically mask the interrupt source



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 33

Capabilities as First-Class Entities

Capabilities as unforgeable object identifiers

But eventually each access to an object needs to be bound-checked and 
translated into the (flat) virtual address space

Suggestion: Embedding the capability reference in pointers

RV128 could provide 64 bits for the capability reference and 64 bits for object 
offset

128-bit flat pointers are probably useless anyway

Besides the (somewhat narrow) use in the microkernel, this could be useful 
for other purposes

Simplifying the implementation of managed languages’ VMs

Working with multiple virtual address spaces at once



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 34

Prior Art

Nordström S., Lindh L., Johansson L., Skoglund T.: Application Specific 
Real-Time Microkernel in Hardware, 14th IEEE-NPSS Real Time 
Conference, 2005

Offloading basic microkernel operations (e.g. thread creation, context 
switching) to hardware shown to improve performance by 15 % on 
average and up to 73 %

This was a coarse-grained approach

Hardware message passing in Intel SCC and Tilera TILE-G64/TILE-
Pro64

Asynchronous message passing with tight software integration



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 35

Prior Art (2)

Hajj I. E,, Merritt A., Zellweger G., Milojicic D., Achermann R., Faraboschi 
P., Hwu W., Roscoe T., Schwan K.: SpaceJMP: Programming with Multiple 
Virtual Address Spaces, 21st ACM ASPLOS, 2016

Practical programming model for using multiple virtual address spaces on 
commodity hardware (evaluated on DragonFly BSD and Barrelfish)

Useful for data-centric applications for sharing large amounts of memory between 
processes

Intel IA-32 Task State Segment (TSS)

Hardware-based context switching

Historically, it has been used by Linux

The primary reason for removal was not performance, but portability



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 36

Prior Art (3)

Intel VT-x VM Functions (VMFUNC)

Efficient cross-VM function calls

Switching the EPT and passing register arguments

Current implementation limited to 512 entry points

Practically usable even for very fine-grained virtualization with the 
granularity of individual functions

Liu Y., Zhou T., Chen K., Chen H., Xia Y.: Thwarting Memory Disclosure with 
Efficient Hypervisor-enforced Intra-domain Isolation, 22nd ACM SIGSAC 
Conference on Computer and Communications Security, 2015

– “The cost of a VMFUNC is similar with a syscall”
– “… hypervisor-level protection at the cost of system calls”

SkyBridge paper to appear at EuroSys 2019



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 37

Prior Art (4)

Woodruff J., Watson R. N. M., Chisnall D., Moore S., Anderson J., Davis B., Laurie 
B., Neumann P. G., Norton R., Roe. M.: The CHERI capability model: Revisiting RISC 
in the an age of risk, 41st ACM Annual International Symposium on Computer 
Architecture, 2014

Hardware-based capability model for byte-granularity memory protection

Extension of the 64-bit MIPS ISA

Evaluated on an extended MIPS R4000 FPGA soft-core

32 capability registers (256 bits)

Limitation: Inflexible design mostly due to the tight backward compatibility with a 64-bit 
ISA

Intel MPX

Several design and implementation issues, deemed not production-ready



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 38

Summary

Traditionally, hardware has not been designed to accommodate the 
requirements of microkernel multiserver operating systems

Microkernels thus suffer performance penalties

This prevented them from replacing monolithic operating systems and closed the 
vicious cycle

Co-designing the hardware and software might help us gain the benefits of 
the microkernel multiserver design with no performance penalties

However, it requires some out-of-the-box thinking

RISC-V has “once in the lifetime” opportunity to reshape the entire 
computer industry

Finally moving from unsafe and insecure monolithic systems to microkernels



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 39

Acknowledgements

OS Kernel Lab at Huawei Technologies

Javier Picorel

Haibo Chen



Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V 40

Huawei Dresden R&D Lab

Focusing on microkernel research, design and development

Basic research

Applied research

Prototype development

Collaboration with academia and other technology companies

Looking for senior operating system researchers, designers, developers and 
experts

Previous microkernel experience is a big plus

“A startup within a large company”

Shaping the future product portfolio of Huawei

Including hardware/software co-design via HiSilicon



41Martin Děcký, FOSDEM, February 2nd 2019 Lessons Learned from Porting HelenOS to RISC-V

Q&A



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

