
Buildroot for RISC-V

Using Buildroot to create embedded Linux systems
for 64-bit RISC-V

Mark Corbin

Copyright © 2019 Embecosm.
Freely available under a Creative Commons license.

About me
● Embedded Operating Systems Lead at Embecosm
● Career in Embedded Systems specialising in low-

level devices and embedded Linux
● Developing Linux systems since 1996
● Currently the RISC-V maintainer for the Buildroot

project

Presentation overview
● What is Buildroot?
● A little about RISC-V
● Comparing Buildroot with Yocto
● Adding RISC-V support to Buildroot
● Building a system with Buildroot
● On-going tasks and future enhancements

What is Buildroot?
‘Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems
through cross-compilation.’ - buildroot.org

● Builds everything you need from source – cross tool chain, bootloader, kernel and root
filesystem image

● Minimalist with a strong focus on simplicity
● Support for a wide range of boards and architectures

– ARC, Arm, Arm64, C-Sky, m68k, Microblaze, MIPS, MIPS64, NIOS II, OpenRISC, PowerPC,
PowerPC64, RISC-V, SuperH, Sparc, Sparc64, x86, x86_64, Xtensa

● Further information:
● https://buildroot.org/
● https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf
● https://elinux.org/images/d/dd/Buildroot-Whats-New-ELC2018.pdf

https://buildroot.org/
https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf
https://elinux.org/images/d/dd/Buildroot-Whats-New-ELC2018.pdf

A little bit about RISC-V
● RISC-V (“risk-five”) is an open source Instruction Set Architecture (ISA) specification

– Open source, royalty free
– Simple – base ISA has < 50 instructions (estimated 1338 instructions for x86 in 2015)
– Clean-slate design
– Modular design with extensions, e.g. M (multiply/divide) A (atomic) F (single FP) D (double FP) C (compressed)
– Stable – base and standard extensions are frozen

● RISC-V Foundation
– Non-profit corporation that oversees the development and drives the adoption of the RISC-V ISA
– Over 100 member organisations including Google, NVIDIA, NXP, Western Digital, Qualcomm, Samsung & Embecosm
– Membership growing

● Thales (November 2018), Raspberry Pi Foundation (Jan 2019)

● Further information:
● https://en.wikipedia.org/wiki/RISC-V
● https://riscv.org

https://en.wikipedia.org/wiki/RISC-V
https://riscv.org/

Comparing Buildroot with Yocto

● Further information:
● https://opensource.com/article/18/6/embedded-linux-build-tools
● https://bootlin.com/pub/conferences/2016/elc/belloni-petazzoni-buildroot-oe/belloni-petazzoni-buildroot-oe.pdf

Buildroot Yocto
Focussed on speed and simplicity Extremely flexible and customisable

Easy to configure, easy to understand Steep learning curve

Builds a root filesystem image Builds a package feed

Open community - vendor neutral Open community - governed by the Yocto Project
Advisory Board

Over 2300 packages available Over 8000 packages available

Independent layers used to expand functionality

https://opensource.com/article/18/6/embedded-linux-build-tools
https://bootlin.com/pub/conferences/2016/elc/belloni-petazzoni-buildroot-oe/belloni-petazzoni-buildroot-oe.pdf

Adding RISC-V support to Buildroot (1)
● Goals

– Add initial RISC-V 64-bit support to Buildroot
● Provide a quick and easy way to evaluate and test RISC-V systems
● Software support and hardware available for 64-bit

– Work towards upstreaming features
● Reduce number of existing RISC-V repositories

– Minimise work
● Avoid adding custom features
● Use existing upstream code where possible

Adding RISC-V support to Buildroot (2)
● Choice of components (August 2018)

– Target
● QEMU (https://www.qemu.org/) - easily available, low cost, RISC-V support since 2.12
● Consider SiFive HiFive Unleashed board for future

– Tool chain
● RISC-V support since gcc 7.1, require binutils > 2.30 to build a kernel

– C library
● Buildroot supports glibc, uclibc and musl. Only glibc has upstream RISC-V support (64-bit only)

– Bootloader
● BBL (RISC-V specific, but minimal work required)
● U-Boot (widely used but requires work)

– Kernel
● mainline support since 4.15, but not able to boot under QEMU.
● use the 4.15 branch from the riscv-linux git repository

https://www.qemu.org/

Building a system with Buildroot: Overview
● Get the source

– Download a stable release tarball or clone the git repository
● Configure the build

– Uses Kconfig like the Linux kernel
– Manually - ‘make menuconfig’, ‘make nconfig’, ‘make xconfig’, …
– Automatically – use a predefined default config, e.g. ‘make <target_board>_defconfig’

● Build
– ‘make’
– output/images directory – filesystem tarball, filesystem binary image, kernel, bootloader image etc.

● Test/Deploy
– Test with QEMU or deploy to target hardware

Building a system with Buildroot (1)
● Get the source

– git clone git://git.busybox.net/buildroot
– Checkout time < 30s
– Total 136MB

Building a system with Buildroot (2)
● Configure the Build

● ‘make menuconfig’ or ‘make qemu_riscv64_virt_defconfig’

Building a system with Buildroot (3)
● Build

– ‘make’
– Build time 22m 29s
– Kernel 6.5MB

(includes bootloader)
– Root filesystem 3.9MB
– Disk space 7.8GB

(download 2.9GB)

Building a system with Buildroot (4)
● Testing with QEMU

– qemu-system-riscv64 -M virt -kernel output/images/bbl -append "root=/dev/vda ro
console=ttyS0" -drive file=output/images/rootfs.ext2,format=raw,id=hd0 -device virtio-blk-
device,drive=hd0 -netdev user,id=net0 -device virtio-net-device,netdev=net0 -nographic

On-going tasks and future enhancements
● Status of 32-bit support

– Patches accepted into master branch January 2019
– Requires custom glibc version

● Continuous improvement
– Work through autobuilder results

● Migrate to upstream versions
– kernel, 32-bit glibc.

● Add support for new features as the RISC-V software
ecosystem evolves
– U-Boot, uclibc, musl.

● Support for development boards
● Software status

● https://github.com/riscv/riscv-wiki/wiki/RISC-V-Software-Status

https://github.com/riscv/riscv-wiki/wiki/RISC-V-Software-Status

Thank You

mark.corbin@embecosm.com

https://www.embecosm.com

Copyright © 2019 Embecosm.
Freely available under a Creative Commons license.

mailto:mark.corbin@embecosm.com
https://www.embecosm.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

