Silicium

Retrocomputer Preservation

Preserving is not just about storing computers, disks and books in a hangar

FOSDEM Brussels, 2 & 3 February 2019

Original machine ?

Hard Emulation ?

Soft Emulation ?
A French non-profit organization for the preservation of videogame and computer heritage
our vision

To preserve heritage videogames and computers. To show them to people. Silicium manages an ever-growing collection and a regular exhibition schedule.
Back in 1994, it was so obvious that computers should be preserved. We then decided to gather and shelter many obsolete computers, videogames, software, books... and testimonies.

Once we were seen like Zorg planet inhabitants, but today everyone feels the need to preserve computer heritage. Silicium has some answers.
our team today

René Speranza
President & cofounder
Has never achieved to transcend the 16-color palette.

Benoit Triquet
Digital specialist
Not everyone can whisper the true language of the machine to the computer.

Valérie Amiel
Management expert
Explains us how to pop around things we need.
The heart of Silicium lies in its unmatched collection of 1965 to 2015 computing representatives, which are readily available for studies, display & exhibitions.
our action

It’s hard to describe what Silicium preserves. Here’s what we consider important.

Computers
It all begun with compact Hewlett-Packard HP-85. Instead of being recycled, it launched the idea of computer preservation in 1989.

Videogames
People ask us to show some fun. Videogames seem to be the right answer. And we know that even the hardcore computer can be fun to play with.

Everything
Tons of iron, loads of paper. We try to maintain the whole thing together in order to keep the spirit of computing vivid and unforgettable.
With more than 100 members and a 25-year history, Silicium tries to offer a true savoir-faire.
our expertise

Silicium not only manages a huge collection. We also promote this heritage in many ways.

Exhibitions
The main link with people

Expertise
Need an expert in DEC minicomputers or in Philips Videopac? Ask Silicium.

Publisher
Silicium regularly publishes books and games.

Manage community
Mysilicium forum is a hub for enthusiasts to share their passion.

Conference
This heritage has a long story to tell.

Preservation
Unfortunately, many old machines need to be repaired. Silicium experts play a major role.
Silicium in pictures

Some fine examples of Silicium activities.

01
2013 Odyssud Gameplay was a big exhibition,

02
Nothing could be done without enthusiasts and a huge collection,

03
French TV captures an old computer screen drawing live,

04
Old technology requires some specific skills to maintain machines in working order.

Let’s achieve our main goal: opening a permanent exhibition.
Preserving is not just about storing computers, disks and books in a hangar

We do repair computers but nothing is forever

Hardware rots
Early ASICs in 8-bit British micros...

Media rots
Mass-storage emulators

Documentation rots
Digitize Reverse-engineer
Retro mass-storage devices

* Tape Decks

Audio interface is easy:
- smartphone with headphone jack
- Digital interfaces are proprietary
- Atari 800: no emulators but A8CAS
- open source software for digitizing copy-protected tapes and use in emulators

* Hard Drives

3€ generic « SD2IDE » work best in our experience
- CF-to-IDE are passive, depend on your CF card
- IDE-to-mSATA are less compatible
- Open source SCSI2SD
- We use v5 manufactured by Itead
Floppy disks

- A floppy drive is « dumb », mostly analog electronics
 Most 8-bit micros do not have a floppy controller

- Easy: digital serial port
 Atari 800: an Arduino is enough, open-source SIO2SD ebay, lotharek.pl
 BBC Micro: software-defined so anything works, we use Ctorwy31 MMC drive

- Hard: processor bus
 Oric floppy controller boards are remade

- Standard non-PC controller
 Like Apple II where we use CFFA3000, BigMessOfWires FloppyEmu, ...
Shugart-like floppy drives
Shugart-like floppy drives

- **Beware of pinout** differences between true Shugart and PC industry standard drives
 - Motor-on and drive select lines

- **Non-standard ribbon cables**: Amstrad CPC
 - 26-pin ribbon cable to 34-pin PC => 2-way success
 - Beware of reversed +5V and +12V !!!

- **HxC is the best**: resilient hardware, highly compatible
 - By JF Del Nero with contribs from Torlus
 - Hardware is open source :) firmware is not :(

- **Gotek drives** are inexpensive
 - Must-have: FlashFloppy open source firmware
* reverse engineering

The case of the Squale by Apollo 7

French microcomputer
only 3 prototypes built
1 preserved by French museum CNAM
Reverse engineered by Greg Estrade and JF Del Nero
Emulator now available

http://hxc2001.free.fr/Squale/
http://torlus.github.io/2015/04/10/cnam-squale
FPGA-based emulators

@Torlus, http://lvt.tl/
Sega Megadrive/Genesis
Nec PC-Engine/TurboGrafx
Atari Jaguar
all developed in Verilog on Altera Cyclone
Ported to the MiSTer open source project
Successor to the MiST FPGA open source project
Uses Cyclone V eval board, inexpensive, huge FPGA

(co-founder of ArcadeRetroGaming)
MCC (Multiple Classic Computer) emulates a C64 J68, a Verilog implementation of Motorola 68000
It’s demo time!

Bomberman ‘93 running on a…

PC Engine
A real Nec PC-Engine is priceless :-) and in excess of 200€ on eBay

MiSTer
Greg’s FPGA core for MiSTer on DE10-nano 140€ to 200€ depending on daughterboards

Raspberry Pi
Batocera Linux on Raspberry Pi 3B+ 50€
Retro hardware development

Greg and Fred use Verilator

- **Verilator** open source, Verilog simulator
- **GTKWave** VCD viewer

Verification of J68 core against Musashi, the 68k emulator used by MAME

Cosimulation in SystemVerilog
module j68_soc (
 input rst_n,
 input clk,
 input uart_rxd,
 input uart_cts_n,
 input uart_dcd_n,
 output uart_txd,
 output uart_rts_n,
 ...
);
Instantiation

```c
int main(int argc, char **argv, char **env) {
    Verilated::commandArgs(argc, argv);
    Vj68_soc* top = new Vj68_soc;
    while (tb_sstep < NUM_STEPS) {
        top->rst_n = (tb_sstep < (vluint64_t)24) ? 0 : 1;
        top->clk = top->clk ^ 1;
        top->eval(); if (Verilated::gotFinish()) break;
    }
    top->final();
}
```

Add tracing

```c
// in declarations
// Init VCD trace dump
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
top->trace(tfp, 99);
tfp->spTrace()->set_time_resolution("1 ps");
tfp->open(file_name);

// in main loop
    top->eval(); tfp->dump(tb_time); if (Verilated::gotFinish()) break; }
```
Simulating in Verilog

Feed 68k test program from simulated memory

```verilog
reg [15:0] r_mem_blk [0:(1 << ADDR_WIDTH) - 1];
reg [15:0] r_q;

// 68k bus activity
always@(posedge clock) begin
    r_q <= r_mem_blk[address][15:0];
    if (wren) begin
        if (byteena[0]) r_mem_blk[address][7:0] <= data[7:0];
        if (byteena[1]) r_mem_blk[address][15:8] <= data[15:8];
    end
end
assign q = r_q;
```
Simulating in Verilated C++

Feed 68k test program from simulated memory

```c++
CART::CART(int w, bool debug, int size) ...
  // Binary file loading
  void CART::load(const char *name, vluint32_t begin, vluint32_t end) ...
  // Cycle evaluate
  void CART::eval(vluint64_t cycle, vluint8_t clk, // Cycle counter, clock
                  vluint8_t ce_n, vluint8_t oe_n, // Control signals
                  vluint32_t a, // Address
                  vluint32_t &q, vluint8_t &oe // Outputs: data, output enable
  ) {
    if (!clk) return;
    a &= 0x7fffffff;
    switch(width) {
      case 1: // 16 bits
        a &= ~1; q = (mem_array[a] << 8) | mem_array[a + 1];
        break;
      case 2: // 32 bits
        a &= ~3; q = (mem_array[a] << 24) | (mem_array[a + 1] << 16)
            | (mem_array[a + 2] << 8) | (mem_array[a + 3] << 0);
        break;
      default:
        q = mem_array[a];
    }
    oe = (!ce_n && !(oe_n & 1)) ? 1 : 0;
    oe |= (!ce_n && !(oe_n & 2)) ? 2 : 0;
  }
```

Feed 68k test program from simulated memory
DPI (Direct Programming Interface)

import "DPI-C" function void dpi_trace_init();
import "DPI-C" function dpi_trace_fetch(
 input integer sr,
 input integer pc,
 input integer usp,
 input integer ssp,
 input integer lvl);

... always@(posedge clk)
begin
 // Instruction fetch
 if (w_dbg_ifetch)
 dpi_trace_fetch({16'd0, w_dbg_sr_reg}, w_dbg_pc_reg,
 w_dbg_usp_reg,
 w_dbg_ssp_reg, {29'd0, w_dbg_irq_lvl});
 ...
end
...
Connect the disassembler from Musashi to the DPI

```c
#include "svdpi.h"
extern "C" {
#include "musashi/m68k.h"
}

void dpi_trace_fetch(int sr, int pc, int usp, int ssp, int lvl) {
    m68k_disassemble(dis_buff, prev_pc, M68K_CPU_TYPE_68010);
    fprintf(fh_j, "PC=%08lx %s\n", prev_pc, dis_buff);
    fprintf(fh_j, "D0=%08x %08x %08x %08x %08x %08x %08x %08x \n",
            regs[0], regs[1],  regs[2],  regs[3],  regs[4],
            regs[5], regs[6],  regs[7]);
    ...
```
Musashi trace dump

Musashi to same trace format

```c
reg = m68k_get_reg((void *)NULL, M68K_REG_PC);
m68k_disassemble(dis_buff, reg, M68K_CPU_TYPE_68010);
fprintf(fh_m, "PC=%08lX  %s\n", reg, dis_buff);
m68k_execute(1); // Musashi run 1 instruction
fprintf(fh_m, "D0=");
for (i = (int)M68K_REG_D0; i <= (int)M68K_REG_D7; i++) {
    reg = m68k_get_reg((void *)NULL, (m68k_register_t)i);
    fprintf(fh_m, "%08lX ", reg); }
```

...and diff traces

```
PC=000002F0  movea.l A0,A1
D0=11552299 33774401 00000000 00000000 00000000 00000000 00000000 00000000
A0=00008004 00008008 00000000 00000000 00000000 00000000 00000000 00000000 0000FFFC
USP=00000000  SSP=0000FFFC  SR=2710  XNZVC=10000

PC=000002F2  move.l #$09010101,(A1)+
D0=11552299 33774401 00000000 00000000 00000000 00000000 00000000 00000000
A0=00008004 00008008 00000000 00000000 00000000 00000000 00000000 00000000 0000FFFC
USP=00000000  SSP=0000FFFC  SR=2710  XNZVC=10000
```
to go a little further

Links to open source projects

www.veripool.org/wiki/verilator
gtkwave.sourceforge.net
sio2sd.gucio.pl/wiki/English
www.codesrc.com/mediawiki/index.php/SCSI2SD
speedofmac.com/emulation/macifom.php
github.com/keirf/FlashFloppy/wiki
github.com/mist-devel/mist-board/wiki
github.com/MiSTer-devel/Main_MiSTer/wiki
github.com/Torlus/FPGAPCE
github.com/MiSTer-devel/TurboGrafx16_MiSTer
github.com/MiSTer-devel/Genesis_MiSTer
Contact us!

And share your projects. Silicium action is based on popular support. As the technological heritage is getting bigger each day, Silicium’s members are able to offer extensive knowledge in order to manage large-scale projects, up to the creation of a permanent museum.
Retrocomputer Preservation

Preserving is not just about storing computers, disks and books in a hangar

FOSDEM Brussels, 2 & 3 February 2019

Meet us Saturday At 11:00!