

RAPIDS, FOSDEM'19

Dr. Christoph Angerer, Manager Al Developer Technologies, NVIDIA

HPC & AI TRANSFORMS INDUSTRIES

Computational & Data Scientists Are Driving Change

DATA SCIENCE IS NOT A LINEAR PROCESS

It Requires Exploration and Iterations

Accelerating `Model Training` only does have benefit but doesn't address the whole problem

DAY IN THE LIFE

Or: Why did I want to become a Data Scientist?

Data Scientist are valued resources. Why not give them the environment to be more productive

PERFORMANCE AND DATA GROWTH

Post-Moore's law

Moore's law is no longer a predictor of capacity in CPU market growth

Distributing CPUs exacerbates the problem

Data sizes continue to grow

💿 💿 🕺

5

TRADITIONAL DATA SCIENCE CLUSTER

Workload Profile:

Fannie Mae Mortgage Data:

- 192GB data set
- 16 years, 68 quarters
- 34.7 Million single family mortgage loans
- 1.85 Billion performance records
- XGBoost training set: 50 features

300 Servers | \$3M | 180 kW

GPU-ACCELERATED MACHINE LEARNING CLUSTER

NVIDIA Data Science Platform with DGX-2

1 DGX-2 | 10 kW

1/8 the Cost | 1/15 the Space

1/18 the Power

DELIVERING DATA SCIENCE VALUE

DATA SCIENCE WORKFLOW WITH RAPIDS

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

DATA PREPARATION

GPUs accelerated compute for in-memory data preparation Simplified implementation using familiar data science tools Python drop-in Pandas replacement built on CUDA C++. GPU-accelerated Spark (in development)

DATA SCIENCE WORKFLOW WITH RAPIDS

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

MODEL TRAINING

GPU-acceleration of today's most popular ML algorithms XGBoost, PCA, K-means, k-NN, DBScan, tSVD ...

DATA SCIENCE WORKFLOW WITH RAPIDS

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

VISUALIZATION

Effortless exploration of datasets, billions of records in milliseconds Dynamic interaction with data = faster ML model development Data visualization ecosystem (Graphistry & OmniSci), integrated with RAPIDS

THE EFFECTS OF END-TO-END ACCELERATION

Faster Data Access Less Data Movement

Hadoop Processing, Reading from disk

ADDRESSING CHALLENGES IN GPU ACCELERATED DATA SCIENCE

Yes GPUs are fast but ...

- Too much data movement
- Too many makeshift data formats
- Writing CUDA C/C++ is involved
- No *Python* API for data manipulation

DATA MOVEMENT AND TRANSFORMATION

The bane of productivity and performance

DATA MOVEMENT AND TRANSFORMATION

What if we could keep data on the GPU?

LEARNING FROM APACHE ARROW

- Each system has its own internal memory format
- 70-80% computation wasted on serialization and deserialization
- Similar functionality implemented in multiple projects

- All systems utilize the same memory format
- No overhead for cross-system communication
- Projects can share functionality (eg, Parquet-to-Arrow reader)

From Apache Arrow Home Page - https://arrow.apache.org/

16

CUDA DATA FRAMES IN PYTHON

GPUs at your Fingertips

Illustrations from https://changhsinlee.com/pyspark-dataframe-basics/

RAPIDS OPEN GPU DATA SCIENCE

RAPIDS Open GPU Data Science

- Learn what the data science community needs
- Use best practices and standards
- Build scalable systems and algorithms
- Test Applications and workflows
- Iterate

RAPIDS COMPONENTS

CUML & CUGRAPH

AI LIBRARIES

cuML & cuGraph

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Accelerating more of the AI ecosystem

Graph Analytics is fundamental to network analysis

Machine Learning is fundamental to prediction, classification, clustering, anomaly detection and recommendations.

Both can be accelerated with NVIDIA GPU

8x V100 20-90x faster than dual socket CPU

Decisions Trees Random Forests Linear Regressions Logistics Regressions K-Means K-Nearest Neighbor DBSCAN Kalman Filtering Principal Components Single Value Decomposition Bayesian Inferencing

PageRank BFS Jaccard Similarity Single Source Shortest Path Triangle Counting Louvain Modularity

Time Series

ARIMA Holt-Winters

XGBoost, Mortgage Dataset, 90x

CUDF + XGBOOST DGX-2 vs Scale Out CPU Cluster

- Full end to end pipeline
- Leveraging Dask + PyGDF
- Store each GPU results in sys mem then read back in
- Arrow to Dmatrix (CSR) for XGBoost

CUDF + XGBOOST Scale Out GPU Cluster vs DGX-2

- Full end to end pipeline
- Leveraging Dask for multi-node + PyGDF
- Store each GPU results in sys mem then read back in
- Arrow to Dmatrix (CSR) for XGBoost

CUML Benchmarks of initial algorithms

15

NEAR FUTURE WORK ON CUML

Additional algorithms in development right now

K-means - Released

K-NN - Released

Kalman filter - v0.5

GLM - v0.5

Random Forests - v0.6

ARIMA - v0.6

UMAP - v0.6

Collaborative filtering - Q2 2019

CUGRAPH GPU-Accelerated Graph Analytics Library

Coming Soon: Full NVGraph Integration Q1 2019

CUDF

CUDF GPU DataFrame library

	Area Abbreviation	Area Code	Area	Item Code	Item	Element Code	Element	Unit	latitude	longitude	 Y2004	Y2005	Y2006	Y2007	Y2008
0	AF	2	Afghanistan	2511	Wheat and products	5142	Food	1000 tonnes	33.94	67.71	 3249.0	3486.0	3704.0	4164.0	4252.0
1	AF	2	Afghanistan	2805	Rice (Milled Equivalent)	5142	Food	1000 tonnes	33.94	67.71	 419.0	445.0	546.0	455.0	490.0
2	AF	2	Afghanistan	2513	Barley and products	5521	Feed	1000 tonnes	33.94	67.71	 58.0	236.0	262.0	263.0	230.0
3	AF	2	Afghanistan	2513	Barley and products	5142	Food	1000 tonnes	33.94	67.71	 185.0	43.0	44.0	48.0	62.0
4	AF	2	Afghanistan	2514	Maize and products	5521	Feed	1000 tonnes	33.94	67.71	 120.0	208.0	233.0	249.0	247.0
5	AF	2	Afghanistan	2514	Maize and products	5142	Food	1000 tonnes	33.94	67.71	 231.0	67.0	82.0	67.0	69.0
6	AF	2	Afghanistan	2517	Millet and products	5142	Food	1000 tonnes	33.94	67.71	 15.0	21.0	11.0	19.0	21.0
7	AF	2	Afghanistan	2520	Cereals, Other	5142	Food	1000 tonnes	33.94	67.71	 2.0	1.0	1.0	0.0	0.0
8	AF	2	Afghanistan	2531	Potatoes and products	5142	Food	1000 tonnes	33.94	67.71	 276.0	294.0	294.0	260.0	242.0
9	AF	2	Afghanistan	2536	Sugar cane	5521	Feed	1000 tonnes	33.94	67.71	 50.0	29.0	61.0	65.0	54.0
10	AF	2	Afghanistan	2537	Sugar beet	5521	Feed	1000 tonnes	33.94	67.71	 0.0	0.0	0.0	0.0	0.0

- Apache Arrow data format
- Pandas-like API
- Unary and Binary Operations
- Joins / Merges
- GroupBys
- Filters
- User-Defined Functions (UDFs)
- Accelerated file readers
- Etc.

CUDF Today

CUDA

With Python Bindings

- Low level library containing function implementations and C/C++ API
- Importing/exporting Apache Arrow using the CUDA IPC mechanism
- CUDA kernels to perform element-wise math operations on GPU DataFrame columns
- CUDA sort, join, groupby, and reduction operations on GPU DataFrames

- A Python library for manipulating GPU DataFrames
- Python interface to CUDA C++ with additional functionality
- Creating Apache Arrow from Numpy arrays, Pandas DataFrames, and PyArrow Tables
- JIT compilation of User-Defined Functions (UDFs) using Numba

CUSTRING & NVSTRING

GPU-Accelerated string functions with a Pandas-like API

- API and functionality is following Pandas: <u>https://pandas.pydata.org/pandas-</u> <u>docs/stable/api.html#string-handling</u>
- lower()
 - ~22x speedup
- find()
 - ~40x speedup
- slice()
 - ~100x speedup

DASK

DASK

What is Dask and why does RAPIDS use it for scaling out?

- Dask is a distributed computation scheduler built to scale Python workloads from laptops to supercomputer clusters.
- Extremely modular with scheduling, compute, data transfer, and out-of-core handling all being disjointed allowing us to plug in our own implementations.
- Can easily run multiple Dask workers per node to allow for an easier development model of one worker per GPU regardless of single node or multi node environment.

DASK Scale up and out with cuDF

- Use cuDF primitives underneath in map-reduce style operations with the same high level API
- Instead of using typical Dask data movement of pickling objects and sending via TCP sockets, take advantage of hardware advancements using a communications framework called OpenUCX:
 - For intranode data movement, utilize NVLink and PCIe peer-to-peer communications
 - For internode data movement, utilize GPU RDMA over Infiniband and RoCE

https://github.com/rapidsai/dask_gdf

DASK Scale up and out with cuML

- Native integration with Dask + cuDF
- Can easily use Dask workers to initialize NCCL for optimized gather / scatter operations
 - Example: this is how the dask-xgboost included in the container works for multi-GPU and multi-node, multi-GPU
- Provides easy to use, high level primitives for synchronization of workers which is needed for many ML algorithms

LOOKING TO THE FUTURE

GPU DATAFRAME Next few months

- Continue improving performance and functionality
 - Single GPU
 - Single node, multi GPU
 - Multi node, multi GPU
- String Support
 - Support for specific "string" dtype with GPU-accelerated functionality similar to Pandas
- Accelerated Data Loading
 - File formats: CSV, Parquet, ORC to start

ACCELERATED DATA LOADING

CPUs bottleneck data loading in high throughput systems

- CSV Reader
 - Follows API of pandas.read_csv
 - Current implementation is >10x speed improvement over pandas
- Parquet Reader
 - Work in progress: <u>https://github.com/gpuopenanalytics/li</u> <u>bgdf/pull/85</u>
 - Will follow API of pandas.read_parquet
- ORC Reader
- Additionally looking towards GPU-accelerating decompression for common compression schemes

PYTHON CUDA ARRAY INTERFACE

Interoperability for Python GPU Array Libraries

- The CUDA array interface is a standard format that describes a GPU array to allow sharing GPU arrays between different libraries without needing to copy or convert data
- Numba, CuPy, and PyTorch are the first libraries to adopt the interface:
 - <u>https://numba.pydata.org/numba-</u> <u>doc/dev/cuda/cuda_array_interface.html</u>
 - <u>https://github.com/cupy/cupy/releases/tag/</u> <u>v5.0.0b4</u>
 - <u>https://github.com/pytorch/pytorch/pull/119</u>
 <u>84</u>

CONCLUDING REMARKS

A DAY IN THE LIFE Or: Why did I want to become a Data Scientist?

A DAY IN THE LIFE Or: Why did I want to become a Data Scientist?

A: For the Data Science. And coffee.

ONE ARCHITECTURE FOR HPC AND DATA SCIENCE

Simulation

Data Analytics

Visualization

RAPIDS

How do I get the software?

- <u>https://github.com/rapidsai</u>
- <u>https://anaconda.org/rapidsai/</u>
- WIP:
 - https://pypi.org/project/cudf
 - https://pypi.org/project/cuml

- <u>https://ngc.nvidia.com/registry/nvidia-</u> <u>rapidsai-rapidsai</u>
- https://hub.docker.com/r/rapidsai/rapidsai/

JOIN THE MOVEMENT

Everyone Can Help!

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!

THANK YOU

