HPC & AI TRANSFORMS INDUSTRIES
Computational & Data Scientists Are Driving Change
DATA SCIENCE IS NOT A LINEAR PROCESS
It Requires Exploration and Iterations

Accelerating `Model Training` only does have benefit but doesn’t address the whole problem.
DAY IN THE LIFE

Or: Why did I want to become a Data Scientist?

Data Scientist are valued resources. Why not give them the environment to be more productive.
PERFORMANCE AND DATA GROWTH

Post-Moore's law

CPU Performance Has Plateaued

Data sizes continue to grow

Moore’s law is no longer a predictor of capacity in CPU market growth

Distributing CPUs exacerbates the problem
TRADITIONAL DATA SCIENCE CLUSTER

Workload Profile:
Fannie Mae Mortgage Data:
• 192GB data set
• 16 years, 68 quarters
• 34.7 Million single family mortgage loans
• 1.85 Billion performance records
• XGBoost training set: 50 features

300 Servers | $3M | 180 kW
GPU-ACCELERATED MACHINE LEARNING CLUSTER

NVIDIA Data Science Platform with DGX-2

1 DGX-2 | 10 kW
1/8 the Cost | 1/15 the Space
1/18 the Power
DELIVERING DATA SCIENCE VALUE

Maximized Productivity

Top Model Accuracy

Lowest TCO

Oak Ridge National Labs

Global Retail Giant

Streaming Media Company

215x Speedup Using RAPIDS with XGBoost

$1B Potential Saving with 4% Error Rate Reduction

$1.5M Infrastructure Cost Saving
DATA SCIENCE WORKFLOW WITH RAPIDS
Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

DATA PREPARATION

GPUs accelerated compute for in-memory data preparation
Simplified implementation using familiar data science tools
Python drop-in Pandas replacement built on CUDA C++. GPU-accelerated Spark (in development)
DATA SCIENCE WORKFLOW WITH RAPIDS
Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

MODEL TRAINING
GPU-acceleration of today’s most popular ML algorithms
XGBoost, PCA, K-means, k-NN, DBScan, tSVD ...
DATA SCIENCE WORKFLOW WITH RAPIDS
Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

VISUALIZATION
Effortless exploration of datasets, billions of records in milliseconds
Dynamic interaction with data = faster ML model development
Data visualization ecosystem (Graphistry & OmniSci), integrated with RAPIDS
THE EFFECTS OF END-TO-END ACCELERATION

Faster Data Access Less Data Movement

Hadoop Processing, Reading from disk

Spark In-Memory Processing

GPU/Spark In-Memory Processing

RAPIDS

25-100x Improvement
Less code
Language flexible
Primarily In-Memory

5-10x Improvement
More code
Language rigid
Substantially on GPU

50-100x Improvement
Same code
Language flexible
Primarily on GPU
Yes GPUs are fast but ...

- Too much data movement
- Too many makeshift data formats
- Writing CUDA C/C++ is involved
- No Python API for data manipulation
DATA MOVEMENT AND TRANSFORMATION

The bane of productivity and performance

CPU

GPU

APP A

APP B

Copy & Convert

Copy & Convert

Copy & Convert

Read Data

Load Data

Data

GPU Data

GPU Data
DATA MOVEMENT AND TRANSFORMATION

What if we could keep data on the GPU?

APP A

DATA MOVEMENT AND TRANSFORMATION

What if we could keep data on the GPU?

APP A

APP B

APP A

CPU

GPU

Load Data

Copy & Convert

Copy & Convert

Copy & Convert

Read Data
LEARNING FROM APACHE ARROW

- Each system has its own internal memory format
- 70-80% computation wasted on serialization and deserialization
- Similar functionality implemented in multiple projects

- All systems utilize the same memory format
- No overhead for cross-system communication
- Projects can share functionality (eg, Parquet-to-Arrow reader)

From Apache Arrow Home Page - https://arrow.apache.org/
CUDA DATA FRAMES IN PYTHON
GPUs at your Fingertips

Illustrations from https://changhsinlee.com/pyspark-dataframe-basics/
RAPIDS
OPEN GPU DATA SCIENCE
RAPIDS
Open GPU Data Science

- Learn what the data science community needs
- Use best practices and standards
- Build scalable systems and algorithms
- Test Applications and workflows
- Iterate
CUML & CUGRAPH

- cuDF Analytics
- cuML Machine Learning
- cuGraph Graph Analytics
- PyTorch & Chainer Deep Learning
- Kepler.GL Visualization

Data Preparation → Model Training → Visualization

GPU Memory

DASK

Apache Arrow
AI LIBRARIES

cuML & cuGraph

Accelerating more of the AI ecosystem

Graph Analytics is fundamental to network analysis

Machine Learning is fundamental to prediction, classification, clustering, anomaly detection and recommendations.

Both can be accelerated with NVIDIA GPU

8x V100 20-90x faster than dual socket CPU

Machine Learning

Decisions Trees
Random Forests
Linear Regressions
Logistics Regressions
K-Means
K-Nearest Neighbor
DBSCAN
Kalman Filtering
Principal Components
Single Value Decomposition
Bayesian Inferencing

Graph Analytics

PageRank
BFS
Jaccard Similarity
Single Source Shortest Path
Triangle Counting
Louvain Modularity

Time Series

ARIMA
Holt-Winters

XGBoost, Mortgage Dataset, 90x

3 Hours to 2 mins on 1 DGX-1
CUDF + XGBOOST
DGX-2 vs Scale Out CPU Cluster

- Full end to end pipeline
- Leveraging Dask + PyGDF
- Store each GPU results in sys mem then read back in
- Arrow to Dmatrix (CSR) for XGBoost
CUDF + XGBOOST

Scale Out GPU Cluster vs DGX-2

- Full end to end pipeline
- Leveraging Dask for multi-node + PyGDF
- Store each GPU results in sys mem then read back in
- Arrow to Dmatrix (CSR) for XGBoost
CUML

Benchmarks of initial algorithms
NEAR FUTURE WORK ON CUML
Additional algorithms in development right now

K-means - Released
K-NN - Released
Kalman filter - v0.5
GLM - v0.5
Random Forests - v0.6
ARIMA - v0.6
UMAP - v0.6
Collaborative filtering - Q2 2019
CUGRAPH
GPU-Accelerated Graph Analytics Library

Coming Soon:
Full NVGraph Integration Q1 2019
CUDF
GPU DataFrame library

- Apache Arrow data format
- Pandas-like API
- Unary and Binary Operations
- Joins / Merges
- GroupBys
- Filters
- User-Defined Functions (UDFs)
- Accelerated file readers
- Etc.
CUDA

• Low level library containing function implementations and C/C++ API
• Importing/exporting Apache Arrow using the CUDA IPC mechanism
• CUDA kernels to perform element-wise math operations on GPU DataFrame columns
• CUDA sort, join, groupby, and reduction operations on GPU DataFrames

With Python Bindings

• A Python library for manipulating GPU DataFrames
• Python interface to CUDA C++ with additional functionality
• Creating Apache Arrow from Numpy arrays, Pandas DataFrames, and PyArrow Tables
• JIT compilation of User-Defined Functions (UDFs) using Numba
CUSTRING & NVSTRING
GPU-Accelerated string functions with a Pandas-like API

- API and functionality is following Pandas: https://pandas.pydata.org/pandas/docs/stable/api.html#string-handling

- `lower()`
 - ~22x speedup

- `find()`
 - ~40x speedup

- `slice()`
 - ~100x speedup
What is Dask and why does RAPIDS use it for scaling out?

• Dask is a distributed computation scheduler built to scale Python workloads from laptops to supercomputer clusters.

• Extremely modular with scheduling, compute, data transfer, and out-of-core handling all being disjointed allowing us to plug in our own implementations.

• Can easily run multiple Dask workers per node to allow for an easier development model of one worker per GPU regardless of single node or multi node environment.
DASK
Scale up and out with cuDF

• Use cuDF primitives underneath in map-reduce style operations with the same high level API

• Instead of using typical Dask data movement of pickling objects and sending via TCP sockets, take advantage of hardware advancements using a communications framework called OpenUCX:
 • For intranode data movement, utilize NVLink and PCIe peer-to-peer communications
 • For internode data movement, utilize GPU RDMA over Infiniband and RoCE

https://github.com/rapidsai/dask_gdf
DASK
Scale up and out with cuML

- Native integration with Dask + cuDF
- Can easily use Dask workers to initialize NCCL for optimized gather / scatter operations
 - Example: this is how the dask-xgboost included in the container works for multi-GPU and multi-node, multi-GPU
- Provides easy to use, high level primitives for synchronization of workers which is needed for many ML algorithms
LOOKING TO THE FUTURE
GPU DATAFRAME
Next few months

• Continue improving performance and functionality
 • Single GPU
 • Single node, multi GPU
 • Multi node, multi GPU
• String Support
 • Support for specific “string” dtype with GPU-accelerated functionality similar to Pandas
• Accelerated Data Loading
 • File formats: CSV, Parquet, ORC - to start
ACCELERATED DATA LOADING

CPUs bottleneck data loading in high throughput systems

- **CSV Reader**
 - Follows API of pandas.read_csv
 - Current implementation is >10x speed improvement over pandas

- **Parquet Reader**
 - Work in progress: https://github.com/gpuopenanalytics/libgdf/pull/85
 - Will follow API of pandas.read_parquet

- **ORC Reader**

- Additionally looking towards GPU-accelerating decompression for common compression schemes

Source: Apache Crail blog: [SQL Performance: Part 1 - Input File Formats](https://crail.apache.org/blog/)
PYTHON CUDA ARRAY INTERFACE

Interoperability for Python GPU Array Libraries

- The CUDA array interface is a standard format that describes a GPU array to allow sharing GPU arrays between different libraries without needing to copy or convert data.

- Numba, CuPy, and PyTorch are the first libraries to adopt the interface:
 - https://github.com/cupy/cupy/releases/tag/v5.0.0b4
 - https://github.com/pytorch/pytorch/pull/11984
CONCLUDING REMARKS
A DAY IN THE LIFE

Or: Why did I want to become a Data Scientist?
A DAY IN THE LIFE
Or: Why did I want to become a Data Scientist?
A: For the Data Science. And coffee.
ONE ARCHITECTURE FOR HPC AND DATA SCIENCE

Simulation

Data Analytics

Visualization
RAPIDS
How do I get the software?

• https://github.com/rapidsai
• https://anaconda.org/rapidsai/
• WIP:
 • https://pypi.org/project/cudf
 • https://pypi.org/project/cuml

• https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
• https://hub.docker.com/r/rapidsai/rapidsai/
JOIN THE MOVEMENT
Everyone Can Help!

APACHE ARROW
https://arrow.apache.org/
@ApacheArrow

RAPIDS
https://rapids.ai
@RAPIDSAI

GPU Open Analytics Initiative
http://gpuopenanalytics.com/
@GPUOAI

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!
THANK YOU