Memory Management

ﬁ CPython’s Memory Management

ema Tw tter

See behind the curtain

struct arena_object Block|Block|Block
struct

ak| ax| ak | ax [|peclheader o] Block|Block

z
*A
4k | 4k| 4k 4K elruct 4,
pool_header
4k | 4k | 4k 4K 3
7%,
%,
struct How many %
struct arena_object || struct arena_object || giruet arena_object pOOI_header sweeps a.n Objects
= survived?
256k 256k 256k
struct

pOOl_headel’ Mark reachable objects, sweep

rest of them

Learn how to Control

import gc import sys

my_list = [] name = "batuhan

. i myname = "batuhan"

my_list.append(my_list)
ourname = "batuhan"

del my_list del name

gc.collect() print(sys.getrefcount("batuhan"))

Handle Memory Leaks

import tracemalloc

tracemalloc.start()
run_some_code()
snapshot = tracemalloc.take snapshot()
top_stats = snapshot.statistics('lineno')
for stat in top_stats[:10]:

print(stat)

Allocation of
Memory

Objects

Memory Management Model
Threshold

Big object allocation
Small object allocation
Object Specifics

Everything Is An Object
T EVER

- In python everything is an .
object

4_ "
»

—— -
- *

typedef struct _object {
_PyObject HEAD_EXTRA

Py;551ze_t ob_refcnt;
struct _typeobject *ob_type;
} PyObject;

Python's Memory Management Model

FnEElE B dic IR sl s Erang] Python core
Object-specific memory > | <-- Non-object memory -->

Python's object allocator]
####### Object memory ####### | < Internal buffers

Python's raw memory allocator (PyMem API)
Python memory (under PyMem manager's control)

Underlying general-purpose allocator (ex: C library malloc)
Virtual memory allocated for the python process

0S-specific Virtual Memory Manager (VMM)
<--- Kernel dynamic storage allocation & management (page-based)

1 I
<-- Physical memory: ROM/RAM --> |

e
(=]
I
-
=
o
(V-
o
@
=]
(e
—
)
e
D
=
(ab)
on
o
e
(9~
—
==
fal
o
=
(ab)
—

Small Object Threshold

obj size > 512 bytes Big

Small

obj size < 512 bytes

Big Objects

- Not our concern
- Uses system allocator

Small Objects

Managed with 3 level of
abstractions

Blocks encapsulates objects
Pools contains same sized blocks
Arena’s contains pool

- 8-byte-alignment
BIOCkS Notation

- Implementation

First level of
abstractions

8-byte-alignment
Notation

The block size
can be range(8,
512+1, 8).

The size -1dx
value can be
found with
(allocated
space / 8) - 1

Object Size Allocated Space Size Idx
(bytes) (bytes)

1-8 8 0

9-16 16 1

17-24 24 2

25-32 32 3

33-40 40 4
505-512 512 63

Implementation

- They designed for containing python objects

- Uses 8-byte-alignment notation for better
management over free blocks

- Marked as free and linked to free blocks
when their object deallocated.

- Implementation
Pools C e

encapsulates same sized
blocks.

Implementation

- union { block *_padding;

struct pool_header {

) } uint count; ref;
- Contains same sized blocks i ¥ !

- 4K Size block xfreeblock;

- Every pool has a pool_header struct pool_header *nextpool;
overhead for meta information. struct pool_header *prevpool;

- Every pool linked together with uint arenaindex;
nextpool & prevpool ptrs. struct

uint szidx; pool_header

uint nextoffset;

uint maxnextoffset;

struct
struct | Block|Block|Block Rop!_headar
pool_header
Block|Block|Block ‘ struct

pool_header

Implementation - Free Block

Block

struct
- Linked List of pool_header BIo&k.Block
Blocks Trocblock i
- Blocks 1dnserted §B|OCk Block Block

whenever they
freed.

States of Blocks

Used Full Empty

Arenas - Implementation

Encapsulates pools

Implementation

- Contains 64 pools.

- Size is 256kb. A big block of
memory .
- System allocator only allocates

space for arenas. The other

abstractions uses this space.
- Also they are linked together

like pools.

struct arena_object {

uintptr_t address;

block* pool_address;

uint nfreepools;

uint ntotalpools;

struct pool_headerx freepools

struct arena_object* nextarena;

struct arena_object* prevarena;

struct arena_object

struct arena_object

—
—

struct arena_object

«—

struct arena_object

256k

256k

256k

struct
pool_header

Block

Block

Block

Block

Block

Block

4k| 4k| 4k | 4k
4k| 4k| 4k | 4k
4k| 4k| 4k | 4k

Object Specifics [ECERE

String Interning a = "batuhan’

b "batuhan"
assert a 1s b

- One object and multiple
names assigned to it
- Happens in Compile Time a = "batuhan”
- By default basic strings b "batuhan"
assert a 1s not b

a = "batuhan”
b = |III.,, (a)
assert a 1s not b

Small Integers

—classification

Title: small int optimization
Type: performance Stage:

Components: Interpreter Core Versions: Python 3.4

—process

- between -5 .. 256
— has internal references

a = 200
b = 200
assert a 1s b

a = 270
b = 270
assert a 1s not b

Garbage
Collection S

Deallocation of Memory

What is Reference Count?

- Reference import sys
- Ref Count
2018
[2018]
b dict(a=2017, b=2018, c=2019)
a

| .getl int(a)

Good Sides vs Bad Sides

- Easy to find unused object - Overhead
- No need for marking - No support cyclical references.
- One of the reasons of GIL

What is Generational GC?

- A GC type powered by a
tracing algorithm called
Mark&Sweep

- Has generations and the
generations helps GC to
find cyclic references.

<

Mark reachable objects, sweep
rest of them

How To Track /
Manage It

Garbage Collector Interface - GC

.

import gc

e Total 10 objects freed

isable()

e . Track status of 'a': False

for _ in range(10):
dummyf(_)

el Rl i R Track status of []: True

print(f"Track status of 'a': {gc.is tracked('a')}")
print(f"Track status of []: {gc.is_tracked([1)}")

Trace memory allocations - TraceMalloc

import tracemalloc
tracemalloc.start(2)

a dict(a-"b) c=rd")
b list(range(5))

snapshot = tracemalloc.take_snapshot()

stat = snapshot.statistics('traceback')[0]
print(f®{stat.countl memory blocks: {stat.size / 1024} KiB")
for line in stat.traceback.format():

print(line)

Debug Malloc Stats

.

PYTHONMALLOC

- debug

impOTt SyS - malloc_debug

- pymalloc_debug

Questions?

