X

Demystifying Coroutines
and Asynchronous
Programming in Python

Mariano Anaya
@rmarianoa

77 skyscanner

FOSDEM 2019 - Feb 03

History
e PEP-255: Simple generators

e PEP-342: Coroutines via enhanced

generators

e PEP-380: Syntax for delegating to a
sub-generator

e PEP-492: Coroutines with async and
await syntax

Generators

PEP 255 -- Simple Generators

PEP: 255
Title: Simple Generators
Author: nas at arctrix.com (Neil Schemenauer), tim.peters at gmail.com (Tim Peters), magnus at hetland.org

(Magnus Lie Hetland)

Discussions- python-iterators at lists.sourceforge.net

To:

Status: Final

Type: Standards Track
Requires: 234

Created: 18-May-2001
Python- 2.2

Version:

Post-History: 14-Jun-2001, 23-Jun-2001

Generate elements, one at
the time, and suspend...

e Save memory
e Support iteration pattern, infinite
seguences, etc.

Simple Generators

e next () willadvance until the next
yield
o Produce a value, & suspend

o End? — StopIteration

PEP 342 -- Coroutines via Enhanced Generators

PEP: 342

Title: Coroutines via Enhanced Generators
Author: Guido van Rossum, Phillip J. Eby
Status: Final

Type: Standards Track

Created: 10-May-2005

Python-Version: 25

Post-History:

Can simple generators...

e ...suspend? v/
e .. send/receive data from the

context? X
e .. handle exceptions from the caller’s

context? X

Generators as coroutines

New methods!
<g>.send(<value>)
<g>.throw(<exception>)

<g>.close()

Coroutines via Enhanced
Generators

Coroutines are syntactically like
generators.

Syntactically equivalent, semantically
different.

Coroutines via Enhanced
Generators

With .send (), the caller sends
(receives) data to (from) the coroutine.

value = yield result

def coro():
step = 0
while True:

eceived = yield step
step += 1 \\\\\\\\\\\\

print(f"Received: {received}") P

N—— _ _ -~

>>> ¢ = coro()
>>> next(c)
>>> step =“c.send(received)

>>> C

= coro()

>>> next(c) # important!

©

def coro():
step = 0
while True:
received =| yield step |{
step += 1
print(f"Received: {received}")

>>> step = C.

send (100)

—

def coro():
step = 0
while True:

received = yield step

step += 1
print(f"Received: {received}")

>>> step = c.send(100)
Received: 100

def coro():
step = 0
while True:
received = yield step

step += 1
print(f"Received: {received}")

>>> step = c.send(100)
Received: 100
>>> step

1

def coro():
step = 0
while True:
received =|yield step <
step += 1
print(f"Received: {received}")

>>> c.throw(ValueError)

ValueError

Traceback (most recent call last)
-——=> 1 step = c.throw(ValueError)

5 step = 0
6 while True:

> 7 received = yield step
8 step += 1

9 print(f"Received: {received}")

Can we do
better?

Better Coroutines

PEP 380 -- Syntax for Delegating to a
Subgenerator

PEP: 380

Title: Syntax for Delegating to a Subgenerator

Author: Gregory Ewing <greg.ewing at canterbury.ac.nz>
Status: Final

Type: Standards Track

Created: 13-Feb-2009

Python-Version: 3.3

Post-History:

Resolution: https://mail.python.org/pipermail/python-dev/2011-June/112010.html

Delegating to a Sub-Generator

e Enhancements
o Generators can now return
values!
o yield from

Generators - Return values

> StopIteration.value

>>> g = gen()
>>> next(g)

1
>>> def gen(): ;>> next(g)
. y-!e.l'd 1 >>> next(g)
yield 2 = ______
return 42 StopIteration

Traceback (most recent call last)
StopIteration: 42

yvield from - Basic

Something in the form

yield from <iterable>

Can be thought of as

for e 1n <iterable>:
yield e

yvield from- More

e Nested coroutines: .send (), and
.throw() are passed along.
e Capture return values

value = yield from coroutine(...)

yield from
Example

def 1internal(name, start, end):
for i in range(start, end):
value = yield i
print(f"{name} got: {value}")
print(f"{name} finished at {i}")
return end

def general():
start = yield from internal("first", 1, 5)
end = yield from internal("second", start, 10)
return end

>>> g = general ()
>>> next(g)

>>> g = general ()
>>> next(g)
1

>>> g = general()
>>> next(g)
1

>>> g.send("1lst value sent to main
coroutine")

>>> g = general()
>>> next(g)
1

>>> g.send("1lst value sent to main
coroutine")

first got: 1st value sent to main
coroutine

2

>>> next(g)

first got: None
first finished at 4
5

>>> g.send("value sent to main

coroutine")
second got: value sent to main

coroutine
G

yvield from- Recap

e Better way of combining
generators/coroutines.

e Enables chaining generators and
many iterables together.

Issues &
limitations

async def / await

PEP 492 -- Coroutines with async and await
syntax

PEP: 492

Title: Coroutines with async and await syntax
Author: Yury Selivanov <yury at magic.io>
Discussions-To: <python-dev at python.org>

Status: Final

Type: Standards Track

Created: 09-Apr-2015

Python-Version: 35

Post-History: 17-Apr-2015, 21-Apr-2015, 27-Apr-2015, 29-Apr-2015, 05-May-2015

yield from » await

py 3.4
@asyncio.coroutine
def coroutine():
yield from asyncio.sleep(1)

py 3.5+
async def coroutine():
await asyncio.sleep(1)

await

~yield from, except that:

e Doesn’'t accept generators that aren’t

coroutines.
e Accepts awaitable objects
o __await__()

asyncio

Event loop — scheduled & run coroutines

o Update them with send () /throw() .
The coroutine we write, delegates with
await, to some other 3rd party generator,
that will do the actual 1/0.

Calling await gives the control back to the
scheduler.

Summary

e Coroutines evolved from generators, but
they're conceptually different ideas.

e yield from » await: more powerful
coroutines (&types).

e A chain of await calls ends with a yie'd.

Thank You!

Mariano Anaya

@rmarianoa

