
Demystifying Coroutines
and Asynchronous
Programming in Python

Mariano Anaya
@rmarianoa

FOSDEM 2019 - Feb 03

History
● PEP-255: Simple generators
● PEP-342: Coroutines via enhanced

generators
● PEP-380: Syntax for delegating to a

sub-generator
● PEP-492: Coroutines with async and

await syntax

Generators

Generate elements, one at
the time, and suspend...

● Save memory
● Support iteration pattern, infinite

sequences, etc.

Simple Generators
● next() will advance until the next

yield
○ Produce a value, & suspend

○ End? → StopIteration

Coroutines

Can simple generators...

● ... suspend? ✔
● … send/receive data from the

context?❌
● … handle exceptions from the caller’s

context?❌

Generators as coroutines

New methods!

<g>.send(<value>)

<g>.throw(<exception>)

<g>.close()

Coroutines are syntactically like
generators.

Syntactically equivalent, semantically
different.

Coroutines via Enhanced
Generators

With .send(), the caller sends
(receives) data to (from) the coroutine.

value = yield result

Coroutines via Enhanced
Generators

>>> c = coro()
>>> next(c)
>>> step = c.send(received)

def coro():
 step = 0
 while True:
 received = yield step
 step += 1
 print(f"Received: {received}")

>>> c = coro()
>>> next(c) # important!
0

def coro():
 step = 0
 while True:
 received = yield step
 step += 1
 print(f"Received: {received}")

>>> step = c.send(100)

def coro():
 step = 0
 while True:
 received = yield step
 step += 1
 print(f"Received: {received}")

>>> step = c.send(100)
Received: 100

def coro():
 step = 0
 while True:
 received = yield step
 step += 1
 print(f"Received: {received}")

>>> step = c.send(100)
Received: 100
>>> step
1

def coro():
 step = 0
 while True:
 received = yield step
 step += 1
 print(f"Received: {received}")

>>> c.throw(ValueError)

ValueError
Traceback (most recent call last)
----> 1 step = c.throw(ValueError)
 5 step = 0
 6 while True:
----> 7 received = yield step
 8 step += 1
 9 print(f"Received: {received}")

Can we do
better?

Better Coroutines

Delegating to a Sub-Generator
● Enhancements
○ Generators can now return

values!
○ yield from

Generators - Return values
→ StopIteration.value

>>> def gen():
...: yield 1
...: yield 2
...: return 42

>>> g = gen()
>>> next(g)
1
>>> next(g)
2
>>> next(g)

StopIteration
Traceback (most recent call last)
StopIteration: 42

yield from - Basic

Something in the form

yield from <iterable>

Can be thought of as

 for e in <iterable>:
 yield e

yield from - More

● Nested coroutines: .send(), and
.throw() are passed along.

● Capture return values

value = yield from coroutine(...)

yield from
 Example

def internal(name, start, end):
 for i in range(start, end):
 value = yield i
 print(f"{name} got: {value}")
 print(f"{name} finished at {i}")
 return end

def general():
 start = yield from internal("first", 1, 5)
 end = yield from internal("second", start, 10)
 return end

>>> g = general()
>>> next(g)

>>> g = general()
>>> next(g)
1

>>> g = general()
>>> next(g)
1

>>> g.send("1st value sent to main
coroutine")

>>> g = general()
>>> next(g)
1

>>> g.send("1st value sent to main
coroutine")
first got: 1st value sent to main
coroutine
2

...

>>> next(g)
first got: None
first finished at 4
5

...

>>> g.send("value sent to main
coroutine")
second got: value sent to main
coroutine
6

yield from - Recap
● Better way of combining

generators/coroutines.
● Enables chaining generators and

many iterables together.

Issues &
limitations

async def / await

yield from → await
py 3.4
@asyncio.coroutine
def coroutine():
 yield from asyncio.sleep(1)

py 3.5+
async def coroutine():
 await asyncio.sleep(1)

await
~ yield from, except that:

● Doesn’t accept generators that aren’t
coroutines.

● Accepts awaitable objects
○ __await__()

asyncio
● Event loop → scheduled & run coroutines

○ Update them with send()/throw().
● The coroutine we write, delegates with

await, to some other 3rd party generator,
that will do the actual I/O.

● Calling await gives the control back to the
scheduler.

Summary
● Coroutines evolved from generators, but

they’re conceptually different ideas.
● yield from → await: more powerful

coroutines (&types).
● A chain of await calls ends with a yield.

Thank You!
Mariano Anaya

@rmarianoa

