

Porting U-Boot to a Modular Device
FOSDEM 2019

Marek Behún • marek.behun@nic.cz • 3. 2. 2019

Contents
● About me
● Introducing the Problem

● Device tree overlays
● ft_board_setup

● Minimizing number of DTS changes

● Result

● Result – Pros and Cons

● Bonus

About me

● kernel/U-Boot developer at CZ.NIC

working on Turris{,Omnia,MOX}

● Student of CS at Charles University in Prague

● Linux user since 2005

Introducing the Problem

● What if some componets are pluggable?

That is what buses like USB, PCIe and SDIO are for!

Introducing the Problem

● And if the components aren‘t plugged via such a bus?

Then the device tree has to be changed.

Introducing the Problem

● Our device exposes several
buses (USB, PCIe, SGMII) via one connector.

● There are several different modules which can be
connected, some can be connected multiple times

● Topology of connected modules can be discovered via SPI
shift register

● How to change the device tree in an elegant way?

Device tree overlays

● Device tree overlays are meant for this kind of thing!

Device tree overlays

● Can we have a device tree overlay for each module?

NO!

● Why not?

The parameters in the DTS nodes can depend on
which modules are connected before them.

Device tree overlays

● But still, overlays can be used, or?

Yes, they can:

armada-3720-turris-mox.dts
armada-3720-turris-mox-peridot.dts
armada-3720-turris-mox-peridot-peridot.dts
armada-3720-turris-mox-peridot-peridot-peridot.dts
armada-3720-turris-mox-topaz.dts
armada-3720-turris-mox-peridot-topaz.dts
...

ft_board_setup

● We can use the device tree setup feature of U-Boot

● It allows to call a special board function on the loaded DTB when
booting Linux

● Are we going to build every node for each connected module in C?

This is what I actually did at the beginning

● Result?

Almost 1500 lines of ugly C code

Minimizing number of DTS changes

● Let‘s write nodes for each possible module into the
main device tree

● Use status = "disabled"; by default

● On boot time enable nodes for connected modules

● Configure the parameters for modules needning
special configuration

Result – Pros and Cons

● Pros:

● Less C code, more readable, fitted to the problem
● Changes in drivers are applied to DTS in mainline

kernel (AFAIK)
● Cons:

● We are not using overlays although they are meant
for such problems

Bonus

● Currently SERDES initialization is done before SPI is probed

● Had to write own tiny implementation of SPI communication

● Fortunately only 35 LOC

● Why?

Because chosen SERDES speed depends on module

(SFP at 1.25 Ghz, switch at 3.125 Ghz)

● Once SERDES has a proper driver, this won‘t be needed

Thank you!

Marek Behún • marek.behun@nic.cz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

