
PARALLEL PROGRAMMING IN GO FOR PERFORMANCE
WITH THE PARGO LIBRARY

PASCAL COSTANZA

WHAT IS PARGO?

§ Pargo is a library for parallel programming in Go at imec’s ExaScience Lab:
§ based on our experiences with parallel programming in C++, Common Lisp, and Java
§ released under a BSD-style open source license at https://github.com/exascience/pargo

§ Pargo supports numerous common parallel programming patterns:
§ Divide-and-conquer task-based parallelism
§ Parallel ranges, parallel reduction, parallel Boolean functions
§ Speculative parallelism
§ Parallel Quicksort and Mergesort
§ Parallel hash table
§ Parallel pipelines inspired by Java Parallel Streams introduced in JDK 8

§ including support for contexts, cancellation, and Go-style error handling

2

https://github.com/exascience/pargo

CONCURRENCY VS. PARALLELISM

§ Concurrency is part of the problem domain.
§ Needs solution even without multicore/node.
§ Go is really good at this!

3

§ Parallelism is part of the solution domain.
§ Only needed for performance.
§ Pargo is really good at this! ;)

https://xkcd.com/726/ Gary W. Sabot, The Paralation Model, The MIT Press, 1988

PARALLEL PROGRAMMING: AN EXAMPLE

4

PARALLEL PROGRAMMING: AN EXAMPLE

5

PARALLEL PROGRAMMING: AN EXAMPLE

6

PARALLEL PROGRAMMING: AN EXAMPLE

7

PARALLEL PROGRAMMING: AN EXAMPLE

8

PARALLEL PROGRAMMING: AN EXAMPLE

9

PARALLEL PROGRAMMING: AN EXAMPLE

10

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

11

sum[0:32]

sum[0:16] sum[16:32]

sum[0:8] sum[8:16] sum[16:24] sum[24:32]

sum[0:4] sum[4:8] sum[8:12] sum[12:16] sum[16:20] sum[20:24] sum[24:28] sum[28:32]

sum[0:2] sum[2:4] sum[4:6] sum[6:8] sum[8:10] sum[10:12] sum[12:14] sum[14:16] sum[16:18] sum[18:20] sum[20:22] sum[22:24] sum[24:26] sum[26;28] sum[28:30] sum[30:32]

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

12

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

13

WITH 16 CORES

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

14

WITH 4 CORES

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

15

WITH LOAD IMBALANCE

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

§ Task-based parallelism allows flexible distribution of work over CPU cores.
§ Distributing work evenly over cores is often not optimal, because of load imbalance.

16

DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

§ Task-based parallelism allows flexible distribution of work over CPU cores.
§ …but how are tasks actually scheduled over the cores?

17

WORK STEALING

§ Work stealing is known to be optimal both in theory and practice
§ Blumofe, Leiserson: Scheduling Multithreaded Computations by Work Stealing,

Journal of the ACM, 1999
§ Frigo, Leiserson, Randall: The Implementation of the Cilk-5 Multithreaded Language, PLDI’98

§ Successfully implemented in many languages and libraries:
§ Cilk for C;Threading Building Blocks for C++; Java fork/join; …
§ …and Go

18

Wonder Gopher by Ashley McNamara,
https://github.com/ashleymcnamara/gophers

WORK STEALING FINDS OPTIMAL DISTRIBUTION ON THE FLY

19

PARALLEL PROGRAMMING: AN EXAMPLE

20

THE EXAMPLE PROGRAM IN PARGO

21

THE EXAMPLE PROGRAM IN PARGO

22

THE EXAMPLE PROGRAM IN PARGO

23

THE EXAMPLE PROGRAM IN PARGO

24

…AND LOTS OF OTHER PARALLEL PROGRAMMING PATTERNS

§ Parallel Do
§ Parallel range
§ Parallel reduction over int, float64, string, interface{}
§ Parallel range reduction over int, float64, string, interface{}
§ Parallel And, Or, RangeAnd, RangeOr
§ Speculative variants of many of the above functions
§ Sequential variants for debugging
§ Parallel Quicksort and merge sort
§ A parallel hash table (similar to Go’s sync.Map)
§ …and parallel pipelines.

25

CONCURRENT PIPELINES IN GO

26

CONCURRENT PIPELINES IN GO

27

CONCURRENT PIPELINES IN GO

28

CONCURRENT PIPELINES IN GO

29

PARALLEL PIPELINES USING PARGO

30

PARALLEL PIPELINES USING PARGO

31

PARALLEL PIPELINES USING PARGO

32

PARALLEL PIPELINES USING PARGO

33

PARALLEL PIPELINES USING PARGO

34

PARALLEL PIPELINES IN PARGO

§ Predefined pipeline sources for arrays, slices, strings, channels, and bufio.Scanner.
§ Support for user-defined sources through the pipeline.Source interface.
§ Support for several kinds of nodes (stages):

§ Sequential, ordered, parallel
§ Strictly ordered, limited parallel
§ Skip and Limit nodes

§ Support for several kinds of filters:
§ Generic receive and finalize
§ Boolean filters: Every, Some, NotEvery, NotAny
§ Counting filter
§ Slice filter

§ Support for contexts, including cancellation
§ Support for error handling, including cancellation on error
§ Support for fine-tuning of batch sizes

35

Go Gopher image by Renee French, CC BY 3.0, https://creativecommons.org/licenses/by/3.0/

ELPREP: A HIGH-PERFORMANCE TOOL FOR SEQUENCING

§ High-performance tool for preparing SAM
files for variant calling.

§ Multi-threaded application that runs entirely
in RAM and merges multiple steps to avoid
repeated file I/O.

§ Can improve performance by a factor of up
to x10 compared to standard tools.

§ elPrep implemented in Go since version 3.0
§ https://github.com/exascience/elprep

Picard/Samtools

elPrep

elPrep (merged)

elPrep (max RAM)

elPrep (max RAM + merged)

0 20m 40m 1h 1h 20m 1h 40m 2h

sort by coordinates filter unmapped reads mark duplicates
add read groups filter sequence dictionary merged

https://github.com/exascience/elprep

PARGO

§ Pargo available at https://github.com/exascience/pargo
§ Documentation: https://godoc.org/github.com/exascience/pargo
§ More documentation: https://github.com/exascience/pargo/wiki
§ elPrep: https://github.com/exascience/elprep

37

https://github.com/exascience/pargo
https://godoc.org/github.com/ExaScience/pargo
https://github.com/ExaScience/pargo/wiki
https://github.com/ExaScience/elprep

38

