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WHAT IS PARGO?

§ Pargo is a library for parallel programming in Go at imec’s ExaScience Lab:
§ based on our experiences with parallel programming in C++, Common Lisp, and Java
§ released under a BSD-style open source license at https://github.com/exascience/pargo

§ Pargo supports numerous common parallel programming patterns:
§ Divide-and-conquer task-based parallelism
§ Parallel ranges, parallel reduction, parallel Boolean functions
§ Speculative parallelism
§ Parallel Quicksort and Mergesort
§ Parallel hash table
§ Parallel pipelines inspired by Java Parallel Streams introduced in JDK 8

§ including support for contexts, cancellation, and Go-style error handling
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https://github.com/exascience/pargo


CONCURRENCY VS. PARALLELISM

§ Concurrency is part of the problem domain.
§ Needs solution even without multicore/node.
§ Go is really good at this!
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§ Parallelism is part of the solution domain.
§ Only needed for performance.
§ Pargo is really good at this! ;)

https://xkcd.com/726/ Gary W. Sabot, The Paralation Model, The MIT Press, 1988



PARALLEL PROGRAMMING: AN EXAMPLE
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DIVIDE-AND-CONQUER TASK-BASED PARALLELISM
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sum[0:32]

sum[0:16]                                                                        sum[16:32]

sum[0:8]                             sum[8:16]                             sum[16:24]                             sum[24:32]

sum[0:4]       sum[4:8]       sum[8:12]       sum[12:16]       sum[16:20]       sum[20:24]       sum[24:28]       sum[28:32]

sum[0:2] sum[2:4] sum[4:6] sum[6:8] sum[8:10] sum[10:12] sum[12:14] sum[14:16] sum[16:18] sum[18:20] sum[20:22] sum[22:24] sum[24:26] sum[26;28] sum[28:30] sum[30:32]



DIVIDE-AND-CONQUER TASK-BASED PARALLELISM
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DIVIDE-AND-CONQUER TASK-BASED PARALLELISM
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WITH 16 CORES



DIVIDE-AND-CONQUER TASK-BASED PARALLELISM
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WITH 4 CORES



DIVIDE-AND-CONQUER TASK-BASED PARALLELISM
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WITH LOAD IMBALANCE



DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

§ Task-based parallelism allows flexible distribution of work over CPU cores.
§ Distributing work evenly over cores is often not optimal, because of load imbalance.
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DIVIDE-AND-CONQUER TASK-BASED PARALLELISM

§ Task-based parallelism allows flexible distribution of work over CPU cores.
§ …but how are tasks actually scheduled over the cores?
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WORK STEALING

§ Work stealing is known to be optimal both in theory and practice
§ Blumofe, Leiserson: Scheduling Multithreaded Computations by Work Stealing,

Journal of the ACM, 1999
§ Frigo, Leiserson, Randall: The Implementation of the Cilk-5 Multithreaded Language, PLDI’98

§ Successfully implemented in many languages and libraries:
§ Cilk for C;Threading Building Blocks for C++; Java fork/join; …
§ …and Go
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Wonder Gopher by Ashley McNamara, 
https://github.com/ashleymcnamara/gophers



WORK STEALING FINDS OPTIMAL DISTRIBUTION ON THE FLY
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PARALLEL PROGRAMMING: AN EXAMPLE
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THE EXAMPLE PROGRAM IN PARGO
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THE EXAMPLE PROGRAM IN PARGO
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…AND LOTS OF OTHER PARALLEL PROGRAMMING PATTERNS

§ Parallel Do
§ Parallel range
§ Parallel reduction over int, float64, string, interface{}
§ Parallel range reduction over int, float64, string, interface{}
§ Parallel And, Or, RangeAnd, RangeOr
§ Speculative variants of many of the above functions
§ Sequential variants for debugging
§ Parallel Quicksort and merge sort
§ A parallel hash table (similar to Go’s sync.Map)
§ …and parallel pipelines.
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CONCURRENT PIPELINES IN GO
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PARALLEL PIPELINES USING PARGO
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PARALLEL PIPELINES IN PARGO

§ Predefined pipeline sources for arrays, slices, strings, channels, and bufio.Scanner.
§ Support for user-defined sources through the pipeline.Source interface.
§ Support for several kinds of nodes (stages):

§ Sequential, ordered, parallel
§ Strictly ordered, limited parallel
§ Skip and Limit nodes

§ Support for several kinds of filters:
§ Generic receive and finalize
§ Boolean filters: Every, Some, NotEvery, NotAny
§ Counting filter
§ Slice filter

§ Support for contexts, including cancellation
§ Support for error handling, including cancellation on error
§ Support for fine-tuning of batch sizes
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Go Gopher image by Renee French, CC BY 3.0, https://creativecommons.org/licenses/by/3.0/

ELPREP: A HIGH-PERFORMANCE TOOL FOR SEQUENCING

§ High-performance tool for preparing SAM 
files for variant calling.

§ Multi-threaded application that runs entirely 
in RAM and merges multiple steps to avoid 
repeated file I/O.

§ Can improve performance by a factor of up 
to x10 compared to standard tools.

§ elPrep implemented in Go since version 3.0
§ https://github.com/exascience/elprep

Picard/Samtools

elPrep

elPrep (merged)

elPrep (max RAM)

elPrep (max RAM + merged)

0 20m 40m 1h 1h 20m 1h 40m 2h

sort by coordinates filter unmapped reads mark duplicates
add read groups filter sequence dictionary merged

https://github.com/exascience/elprep


PARGO

§ Pargo available at https://github.com/exascience/pargo
§ Documentation: https://godoc.org/github.com/exascience/pargo
§ More documentation: https://github.com/exascience/pargo/wiki
§ elPrep: https://github.com/exascience/elprep
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https://github.com/exascience/pargo
https://godoc.org/github.com/ExaScience/pargo
https://github.com/ExaScience/pargo/wiki
https://github.com/ExaScience/elprep
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