
Hardening the Operating System against
transient faults :

Dealing with external interrupts

M. P. Tokponnon, M. Lobelle, E. Ezin, P. Van Roy

FOSDEM 2019

Outline

1. Context

2. Objective & general approach

3. Interrupt handling general approach

4. Result with Genode Demo scenario

4. Conclusion

FOSDEM’19 - Operating System hardening: dealing with External interrupts 2

Context
Transient faults

 change of state in logic circuit.

 caused by an ionizing particle striking a

sensitive circuit

 don’t damage the system

 May lead to crash, hang or erratic

behavior at software layer
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00% 0,5459

0,1579

0,0142

0,2453

0,0362

Transient errors impact on software (*)

No Impact OS crash Application crash Abnormal app termination wrong result

FOSDEM’19 - Operating System hardening: dealing with External interrupts 3

Objective

Hypervisor-based
hardening (Using Nova +
Genode + VirtualBox) to
protect Operating system

4
FOSDEM’19 - Operating System hardening: dealing with External interrupts

Methodology
 Blended Hardening of processors:

 Memory is protected in hardware (ECC):
 Hardware detection: e.g. by machine check

exceptions and other traps (Illegal instructions,
memory fault)

 Detection of silent faults by double execution with
comparison (DWC) of short processing element
(200µs) executed atomically.

 How to handle asynchronous event (interrupt) in
redundancy context?

5FOSDEM’19 - Operating System hardening: dealing with External interrupts

Processing Element Definition

Processing element is
• a sequence of process CPU assembly instructions
• delimited by:

• Maximum number of instruction (via Performance Monitoring Interrupt –
PMI)

• System call
• CPU Exceptions (Page fault, GP fault, TSS, NM, …)
• Input / Output Instructions
• Process switch
• Later, VM Exit

6FOSDEM’19 - Operating System hardening: dealing with External interrupts

Interrupt handling
2 classes of interrupts
• Performance Monitoring Interrupt :

• used to stop PE when a specific number of instructions is executed by CPU
• handled immediately

• External Interrupts:
• cannot be part of Processing Element
• handling is delayed, queued (for differed servicing) until PE is finished:

• Enqueue triggered interrupts
• Execute EOI()
• After committing the current PE, dequeue recorded interrupts (First In

First Out)
If the interrupt require immediate servicing and is proved not influencing PE idempotency

service it
Else Dead case

7
FOSDEM’19 - Operating System hardening: dealing with External interrupts

Result with Genode Demo scenario on Qemu (1/2)

• During booting (Busy time):
• 665 Gcycle (≈4mn, no Idle loop)
• 99% of timer interrupts services are delayed
• 100% of other interrupts (Device originated Interrupts as GSI) are delayed

8

Interrupts CPU Cycles (Kilocycle) Duration (µs)

Timer 47 K 18

Keyboard 103 K 41

Other GSI 128 K 51

FOSDEM’19 - Operating System hardening: dealing with External interrupts

Result with Genode Demo scenario on Qemu (2/2)

• After boot completed:
• 323 Gcycle (≈2mn9s, 5s of Idle loop) : 4% of time in idle loop
• 21% of timer interrupts services are delayed
• None of other interrupts are delayed

9FOSDEM’19 - Operating System hardening: dealing with External interrupts

Conclusion

 When double executing process instructions, external interrupts servicing is
delayed to preserve idempotency among the two runs

 We investigate this interrupt delaying impact on process execution in Genode
Demonstration operating system

 We found that while performance penalty is quite large during CPU bound
operations (like when booting), it is negligible for common workload

 We will run some common benchmarks to access more accurately this
performance impact

10FOSDEM’19 - Operating System hardening: dealing with External interrupts

Hardening the Operating System against
transient faults :

Dealing with external interrupts

M. P. Tokponnon, M. Lobelle, E. Ezin, P. Van Roy

FOSDEM 2019

