
Introduction to Open
API Specification

Lorna Mitchell, Nexmo

Smile!

Developer Advocate, I LOVE APIs and docs

OAS is much more than docs but it's also a great way to create docs

Describing APIs
• Describe RESTful HTTP APIs in a machine-readable way
• API description is independent of outputs such as

documentation
• Enable things that are not "just" documentation

@lornajane

It is about docs, but not just docs.

Write docs OR write a spec, make amazing docs and more

Separation of content and presentation

More than docs, developers and docs don't always mix. DevX: give them what they need to succed

Spec-First API Design

@lornajane

Compare with docs-first API desigN

Tell a story about needing a holiday let availability API - yesterday

Cheaper to change a spec than rebuild a system. Iterate quickly and with fewer vim macros

About OpenAPI Spec
API description language formerly known as "Swagger".

Became "OpenAPI Spec" -> v3 released

(some tools are still catching up on v3)

@lornajane

Write docs. OR, write spec, generate maintainable docs, open many other doors

I trust these people and organisations (inc Microsoft, API Evangelist, Paypal ...)

Some of the tools still use Swagger in their names

Smartbear own Swagger trademark, OpenAPI Spec is the right way to refer to the open standard

OAS will be to modern APIs what WSDL was for SOAP (give some context on that)

New APIs or Existing Ones?

@lornajane

New APIs or Existing Ones?

Yes!

@lornajane

It's not easy to retrofit but still totally worth it

Who Writes OpenAPI Specs?

@lornajane

API docs have a technical audience so code experience or tech curiosity are useful but not required

If you identify as any of these, especially with tendencies of the others, this is right up your street

I'm an Engineer with Writing tendencies

Anatomy of OpenAPI Spec

@lornajane

Spec is kind of a tree, fixed top level elements, and many things within each

Anatomy of OpenAPI Spec
Top-level elements:
• openapi

• info

• servers

• paths

• components

• security

• tags

@lornajane

openapi The version of OpenAPI that this spec uses

info Title and document version, many other fields

servers An array of URLs to use

paths The good part! URLs and verbs for your API features

components Library of reusable items: parameters, schemas, responses, security schemes, examples, and more

security Which security scheme component to use

tags Free-form labels to group operations together

... introduce Number Insight API

OpenAPI Spec Examples
A JSON or YAML file holds the description (this is YAML)
openapi: 3.0.0
servers:
 - url: 'https://api.nexmo.com/ni'
info:
 title: Number Insight API
 version: 1.1.0
 description: >-
 Nexmo's Number Insight API delivers real-time intelligence about the validity, reachability and roaming status of a phone number and tells you how to format the number correctly in your application. There are three levels of Number Insight API available: [Basic, Standard and Advanced](/number-insight/overview#basic-standard-and-advanced-apis). The advanced API is available asynchronously as well as synchronously.

... a few hundred more lines here

@lornajane

JSON or YAML? I could argue for either. YAML is like the list you'd write in your text editor, JSON has more quotes and brackets

Documenting an Endpoint
paths:
 '/basic/{format}':
 parameters:
 - $ref: '#/components/parameters/format'
 get:
 operationId: getNumberInsightBasic
 parameters:
 - $ref: '#/components/parameters/number'
 - $ref: '#/components/parameters/country'
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/niResponseJsonBasic'

@lornajane

References are excellent - create reusable content rather than copy/pasting (and the errors that go with that)

Example Parameter
number:
 name: number
 in: query
 description: 'A single phone number that you need insight about in national or international format.'
 example: '447700900000'
 required: true
 schema:
 type: string
 pattern: '^[0-9-+\(\)\s]*$'

@lornajane

Example Response
niResponseJsonBasic:
 type: object
 properties:
 status:
 $ref: '#/components/schemas/niBasicStatus'
 status_message:
 type: string
 description: 'The status description of your request.'
 example: 'Success'
 request_id:
 type: string
 description: 'The unique identifier for your request. This is a alphanumeric string up to 40 characters.'
 example: 'aaaaaaaa-bbbb-cccc-dddd-0123456789ab'
 maxLength: 40

 ...

@lornajane

That looks complicated!

@lornajane

It's very verbose and a bit unwieldy, not really rocket science

Rendered Example: ReDoc

@lornajane

Rendered using ReDoc (and Speccy)

It is standard! I use this while I'm spec-ing regardless of the eventual renderer

Rendered Example: Nexmo

@lornajane

Rendered on Nexmo Developer Portal

Imported into Postman

@lornajane

Tools To Get Things Done

@lornajane

Spec is great, community is great. Tools are ... evolving?

Please use Source Control

See also: https://gitworkbook.com

@lornajane

Editing Tools
There are editors with helpful tools
• I like Atom with linter-swagger https://atom.io
• Try SwaggerUI, SwaggerHub, etc https://swagger.io/tools/
• APICurio Studio gets good reviews https://www.apicur.io/
• Stoplight looks interesting https://stoplight.io

(feel free to tweet your best tools at me, I'll share them all later)

@lornajane

https://atom.io
https://swagger.io/tools/
https://www.apicur.io/
https://stoplight.io
Use your normal editor. If you use an editor. If not, that's also fine

I use vim but probably wouldn't preach that

OAS in Atom

@lornajane

Validation Tools
Tools that check or "lint" your file.
• Speccy is a CLI tool with configurable rules http://speccy.io/
• Open API Spec Validator

https://github.com/p1c2u/openapi-spec-validator

Set up in your editor or use a watch command, e.g.:
watch -n 1 speccy lint myspec.yml

@lornajane

http://speccy.io/
https://github.com/p1c2u/openapi-spec-validator
Minimum Viable Spec, do not pass go until you have set up the tooling. It will save time later

We write YAML so the machine can understand: the machine can do the heavy lifting along the way!

Speccy is opinionated. Mostly in a good way, but you can turn rules off

Preview Tools
OAS is a standard! So any preview should do:
• ReDoc is great https://github.com/Rebilly/ReDoc
• Speccy also wraps ReDoc for its serve command
• You can run OpenApi-GUI locally

https://github.com/mermade/openapi-gui

@lornajane

https://github.com/Rebilly/ReDoc
https://github.com/mermade/openapi-gui

Creating OpenAPI Specs is like
eating an elephant

@lornajane

One bite at a time! Build it up in steps, use the tools

Uses for OpenAPI Spec

@lornajane

Resources
• https://www.openapis.org
• https://apievangelist.com
• https://speccy.io
• https://github.com/Rebilly/ReDoc
• https://openapi.tools
• https://github.com/openapitools/openapi-generator

@lornajane

Discussion/Collaboration tool for all stakeholders

Even 'just' docs: Docs, printable docs, large print docs, summary cheatsheet

Programmer tools: mock servers, SDKs (Nexmo has 7, but we could generate those, or users could)

Postman collections actually only OAS2 so you need to downconvert

What will be on this slide in a year? ... answers on a postcard (or twitter)

The magic is the unknown

https://www.openapis.org
https://apievangelist.com
https://speccy.io
https://github.com/Rebilly/ReDoc
https://openapi.tools
https://github.com/openapitools/openapi-generator

@lornajane

Bonus Extra Slides

@lornajane

Code Generators
Libraries can be generated as easily as docs.

For PHP (and so many other languages) try
https://github.com/openapitools/openapi-generator

Pull docker image, generate PHP code from your OpenAPI Spec

@lornajane

https://github.com/openapitools/openapi-generator

Code Generator Example
 1 $config->setUsername(NEXMO_API_KEY);
 2 $config->setPassword(NEXMO_API_SECRET);
 3
 4 $client = new OpenAPI\Client\Api\DefaultApi(
 5 new GuzzleHttp\Client(), $config);
 6 $obj = new \OpenAPI\Client\Model\InlineObject();
 7
 8 try {
 9 $result = $client->retrieveSecrets(NEXMO_API_KEY, $obj);
10 print_r($result);
11 } catch (Exception $e) {
12 echo 'Exception when calling DefaultApi->retrieveSecrets: ', $e->getMessage(), PHP_EOL;
13 }

@lornajane

Code Generator Example
 1 $config->setUsername(NEXMO_API_KEY);
 2 $config->setPassword(NEXMO_API_SECRET);
 3
 4 $client = new OpenAPI\Client\Api\DefaultApi(
 5 new GuzzleHttp\Client(), $config);
 6 $obj = new \OpenAPI\Client\Model\InlineObject();
 7
 8 try {
 9 $result = $client->retrieveSecrets(NEXMO_API_KEY, $obj);
10 print_r($result);
11 } catch (Exception $e) {
12 echo 'Exception when calling DefaultApi->retrieveSecrets: ', $e->getMessage(), PHP_EOL;
13 }

@lornajane

Generated code makes my IDE autocomplete with correct params and auth etc

For a lib, I might wrap the calls so I could add some humane bits if needed

	Describing APIs
	About OpenAPI Spec
	Who Writes OpenAPI Specs?
	Anatomy of OpenAPI Spec
	Anatomy of OpenAPI Spec
	OpenAPI Spec Examples
	Documenting an Endpoint
	Example Parameter
	Example Response
	Rendered Example: ReDoc
	Rendered Example: Nexmo
	Imported into Postman
	Tools To Get Things Done
	Editing Tools
	OAS in Atom
	Validation Tools
	Preview Tools
	Uses for OpenAPI Spec
	Resources
	Bonus Extra Slides
	Code Generators
	Code Generator Example
	Code Generator Example

