
<https://www.mentor.com/embedded-software/>

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions. Linux is the registered trademark of Linus Torvalds
in the U.S. and other countries.
Qt is a registered trade mark of Qt Company Oy. All other trademarks mentioned in this document are trademarks of their respective owners.

Speeding up Programs
with OpenACC in GCC

2019-02-03

Thomas Schwinge, <thomas@codesourcery.com>

Sourcery Services, Embedded Platform Solutions

Mentor, a Siemens Business

<https://fosdem.org/2019/schedule/event/openacc>

HPC, Big Data and Data Science devroom

FOSDEM 2019

... using the compute power of
GPUs and other accelerators

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Introduction, Agenda

● Proven in production use for decades, GCC (the GNU Compiler
Collection) offers C, C++, Fortran, and other compilers for a
multitude of target systems.

● Over the last few years, we – formerly known as "CodeSourcery",
now a group in "Mentor, a Siemens Business" – added support for
the directive-based OpenACC programming model.

● Requiring only few changes to your existing source code,
OpenACC allows for easy parallelization and code offloading to
GPUs and other accelerators.

● We will present a short introduction of GCC and OpenACC,
implementation status, examples and performance results.

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

GCC (GNU Compiler Collection)

● <https://gcc.gnu.org/>
● <https://en.wikipedia.org/wiki/GNU_Compiler_Collection>

“The GNU Compiler Collection (GCC) is a compiler system
produced by the GNU Project supporting various programming
languages. GCC is a key component of the GNU toolchain and the
standard compiler for most Unix-like operating systems. [...]”

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

GCC (GNU Compiler Collection)

● Production-quality support:
– C

– C++

– Fortran

● GCC is relevant in HPC
See, for example, “results taken from the XALT database
at the National Institute of Computational Sciences (NICS)
covering a period from October 2014 through June 2015.
This data is from a Cray XC30 supercomputer called
Darter” as shown in Figure 2 of "Community Use of XALT
in Its First Year in Production," R. Budiardja, M. Fahey, R.
McLay, P. M. Don, B. Hadri, and D. James, In Proceedings
of the Second International Workshop on HPC User
Support Tools, HUST '15, Nov. 2015.
doi.acm.org/10.1145/2834996.2835000.

In his WACCPD 2018
keynote, Jack Wells (ORNL)
had some more recent data.

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

GPU architecture
Example: Nvidia GPU Kepler K20 (GK110)

Nvidia GPU Kepler
K20 (GK110), which
is a few years old,
but general concepts
are still the same

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

GPU architecture
Example: Nvidia GPU Kepler K20 (GK110)

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

GPU architecture
abstractly

<http://www.martinpeniak.com/images/cuda_fig2.png>

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

OpenACC

● Base on your existing source code, few modifications required
● Set of simple directives

– Similar to OpenMP

● Easy for the user to mark up:
– Memory regions for data copy

– Parallel/vector loops

– Reduction operations

– Etc.

● Provide hints to the compiler to better use available parallelism
● Abstract enough to apply to a wide range of parallel architectures

<https://www.openacc.org/>

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Example: matrix multiplication

 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 float t = 0;
 for (k = 0; k < n; k++)
 t += a[i][k] * b[k][j];
 c[i][j] = t;
 }}

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Example: matrix multiplication
OpenACC parallel construct

#pragma acc parallel \ // spawn parallel execution
 copyin(a[0:n][0:n], b[0:n][0:n]) copyout(c[0:n][0:n]) // data copy
{
#pragma acc loop gang // multiprocessors
 for (i = 0; i < n; i++) {
#pragma acc loop worker // groups of PTX “warps”
 for (j = 0; j < n; j++) {
 float t = 0;
#pragma acc loop vector \ // “threads” in 32-size PTX “warps”
 reduction(+: t) // “t” needs a “+” reduction operation
 for (k = 0; k < n; k++)
 t += a[i][k] * b[k][j];
 c[i][j] = t;
}}}

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Example: matrix multiplication
OpenACC kernels construct

#pragma acc kernels \ // spawn parallel execution
 copyin(a[0:n][0:n], b[0:n][0:n]) copyout(c[0:n][0:n]) // data copy
{
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 float t = 0;
 for (k = 0; k < n; k++)
 t += a[i][k] * b[k][j];
 c[i][j] = t;
}}}

(But with GCC, the OpenACC kernels construct does not yet deliver the expected
performance.)

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

OpenACC support in GCC upstream

● Most of OpenACC 2.0a, 2.5; 2.6 in development branch
● OpenACC 2.7 not yet
● Code offloading to:

– Nvidia GPUs (nvptx): upstream

– AMD GPUs (GCN): integrating upstream (GCC 10, 2020?)

– Any others could be done, too, including multi-threaded CPU

● Host system
– Any with suitable drivers to talk to the accelerator

– We’re testing on x86_64 and ppc64le GNU/Linux

● In you’re interested to help or fund development, talk to us :-)

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Real-world application example: lsdalton

● Program suite for “calculations of molecular properties”
● Mixed C/some C++/a lot of Fortran source code
● OpenACC directives in legacy Fortran code

– “The history of Dalton starts in fall of 1983 [...]”

● Project: use GCC/OpenACC with Nvidia GPU for acceleration, then
tune performance
– Compare to PGI compiler

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

lsdalton: SLOCCount

SLOC Directory SLOC-by-Language (Sorted)

519483 src f90=349006,fortran=64312,ansic=63756,sh=41296,cpp=1113

343934 external ansic=149330,f90=89252,cpp=83139,python=11996,perl=9705,sh=475,pascal=37

Totals grouped by language (dominant language first):

F90: 438258 (50.76%) ansic: 213086 (24.68%) cpp: 84252 (9.76%) Fortran: 64312 (7.45%)

sh: 41771 (4.84%) python: 11996 (1.39%) Perl: 9705 (1.12%) pascal: 37 (0.00%)

Total Physical Source Lines of Code (SLOC) = 863,417 [for comparison: GCC w/o testsuites: ~3,500,000]

Development Effort Estimate, Person-Years (Person-Months) = 242.14 (2,905.65) (Basic COCOMO model, Person-Months = 2.4 *
(KSLOC**1.05))

Schedule Estimate, Years (Months) = 4.31 (51.76) (Basic COCOMO model, Months = 2.5 * (person-
months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 56.14

Total Estimated Cost to Develop = $ 32,709,451 (average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to redistribute it under certain conditions as specified by
the GNU GPL license; see the documentation for details.

Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

lsdalton: build

● This includes seven external Git submodules
● Non-trivial build system

– Works for the PGI compiler

– Also for “stock” GCC (no acceleration)

– But not for GCC with OpenACC/nvptx offloading
● Figure out how to use the desired GCC for all components, with -fopenacc enabled etc.

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

lsdalton: a few code changes required

● Getting it to run with GCC with OpenACC/nvptx offloading
– Apples-to-apples comparison

● Replace OpenACC kernels with OpenACC parallel constructs
● Do not link against optimized Nvidia cuBLAS/PGI BLAS library (… for PGI compiler only)

– Replaced by Netlib Fortran BLAS functions, annotated with OpenACC directives

– Replace a few “questionable” uses of OpenACC directives with ones
supported by GCC

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

lsdalton: performance optimization

● Several cycles of:
– Profile

– Analyze

– Tune
● Teach GCC how to do “the right things”

– Did not alter lsdalton sources anymore
● Infrequently report issues to Nvidia

– PTX to hardware JIT compilation

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

lsdalton: performance optimization

● Eventually achieved great performance testing results for the
specific lsdalton configuration tested in this project
– https://blogs.mentor.com/embedded/blog/2018/06/06/evaluating-the-

performance-of-openacc-in-gcc/

– Optimizing GCC’s code generation also benefited other benchmarks

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Real-world application example: n-body

● Set of n individual bodies, each with initial position and velocity
● Distance-dependent force between each pair
● Problem is to calculate the trajectory of each body

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Stock Ubuntu 18.04: GCC 8 with OpenACC/nvptx offloading support

$ sudo aptitude install gcc-8-offload-nvptx
The following NEW packages will be installed:
 gcc-8-offload-nvptx libgomp-plugin-nvptx1{a} nvptx-tools{a}
0 packages upgraded, 3 newly installed, 0 to remove and 239 not upgraded.
Need to get 8057 kB of archives. After unpacking 54.4 MB will be used.
Do you want to continue? [Y/n/?] y
Get: 1 [...] nvptx-tools amd64 0.20180301-1 [27.8 kB]
Get: 2 [...] libgomp-plugin-nvptx1 amd64 8.2.0-1ubuntu2~18.04 [13.4 kB]
Get: 3 [...] gcc-8-offload-nvptx amd64 8.2.0-1ubuntu2~18.04 [8016 kB]
Fetched 8057 kB in 16s (501 kB/s)
[...]
Setting up nvptx-tools (0.20180301-1) ...
[...]
Setting up libgomp-plugin-nvptx1:amd64 (8.2.0-1ubuntu2~18.04) ...
Setting up gcc-8-offload-nvptx (8.2.0-1ubuntu2~18.04) ...
[...]

(Packaging work not done by us, but by Matthias "doko" Klose
who is maintainer of the Debian and Ubuntu GCC packages.)

Beware: these distribution packages are many months
behind our current (public!) development branch: in
terms of bug fixes, features, performance optimizations.

© Mentor, a Siemens Business

<https://www.mentor.com/embedded-software/>

Real-world application example: n-body

● Live demo
– … on this 2013 laptop, with a powerful CPU, but mediocre GPU

© Mentor Graphics Corp. Company
Confidential
www.mentor.com/embedded

www.mentor.com/embedded

Thank you!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

