One image to rule them all - Single boot image for SBCs

André Przywara

apritzel@{Freenode,Github}

Agenda

- SBC boot situation
- Single image theory
- Status

Demo?

Agenda

- SBC boot situation
- Single image theory
- Status

Demo?

Disclaimer: Not an Arm Ltd. story.

Scope

- SBC: single board computer with ARM core, "Fruit-Pis"
 - Not servers!
- SoCs from Allwinner, Rockchip, Amlogic, ...
 - Others possible, but require good upstream support
- Storage-less boards
 - which requires firmware on SD cards
- Firmware: board-specific low-level software, including boot loader
 - Ideally mainline, not BSP based.

Current situation

Orange Pi Prime

Orange Pi Zero+

Orange Pi Win

Orange Pi R1

Helios4

NanoPi Neo 2

Current situation

ROCK64

Under 'ROCK64 Software and OS image Download Section' you will find a complete list of currently supported Operating System images that work with the ROCK64 as well as other related software. The list includes OS images and descriptions of:

● Android TV 7.x (eMMC)

₽ Android TV 7.x (microSD Boot)

Problems

- Separate images for each board
 - Often containing very similar bits
 - Boards might be mistaken
 - Different image might somehow work
- Not every board covered
- Different quality for each board

Idea

- One firmware image to cover multiple boards
- Could be centrally maintained
- Could be shipped by distributions
- Relieves people from choosing their board beforehand

Steps toward the single image

- Get something booted
- Detect SoC
- Detect/choose board
- Load rest of firmware
- Hand over to shared UEFI / bootloader / kernel

Boot process

Typical SoC boot process

- Most SoCs contain embedded boot ROM
- Mask programmed in silicon
- Can't be changed by the user (no updates!)
- But can typically be read (and disassembled)
- Typical size 32-64 KB
- Mission: Find the real boot source, load some boot code and execute
- Code is normally loaded into SRAM (could be L2/L3 cache)
- Boot order could be changeable (pins, fuses)
- Boot code size is typically quite limited (32KB)

Popular SoC boot ROM behaviour

- Allwinner SoCs: Load <= 32KB from sector 16 of SD card
 - Tries eMMC, NAND, SPI NOR flash, USB OTG afterwards
 - Tries sector 256 on most SoCs as well
- Rockchip SoCs: Load from sector 64 of SD card
 - Tries eMMC, NAND, SPI NOR flash first, USB OTG later
 - Tries sectors 1088, 2112, 3136, 4160 as well
- Amlogic SoCs: Load from sector 1 of SD card
- Raspberry Pi: VideoCore loads from 1st FAT partition of SD card
 - Too easy!

generic SD card layout									
M B R	GPT	nnusad							
	17 K								MB
Allwinner									
M B R	e m P U-Boot SPL y			legacy U-Boot image or FIT image: U-Boot proper + DTB (+ ATF)			unused		1st par- tition
	8 K 40 K					~600	1 MB		
Amlogic									
M B R	(Amlogic) BL1			tweaked FIP image: U–Boot proper (w/ DTB) mgmt firmware, ATF			unused t		1 st partition
48K						~600K Rockchip		1 MB	
M B R	(GPT)	e m p t	m p IDB / SPL		e m p t	FIT image: U-Boot proper + DTB + ATF		unused	1 st par- tition
17K 32 K						256 K		1 MB	

Integration of several SPLs

- Observation: many clashes between primary boot locations
- Even more so for subsequent images (U-Boot proper, ...)
- But: secondary boot locations help to sort this out:
 - Allwinner: 8K or 128K
 - Rockchip: 32K, 544K, 1056K, ...
- Plan B: Carve out regions for other SoCs to allow overlapping
- Plan C: Have trampoline loaders
- Assumes location of secondary image(s) can be freely chosen
 - Can put in gaps into FIT or FIP image structure

Detect SoCs

- U-Boot typically compiled for one particular board
- Although actually: for one SoC (+ drivers + DTB)
- Many platforms hardcode the SPL
- Bad for single images :-(
- Solution: convert #ifdef into runtime decisions
- Detect SoC
 - Use platform specific MMIO register (in fuses)
 - Use heuristic (probe ID registers, for instance in the GIC)
- Use toolchain garbage collection to keep code small

U-Boot today

```
#elif defined(CONFIG MACH SUN5I) && CONFIG CONS IND
    sunxi gpio set cfgpin(SUNXI GPB(19), SUN5I GPB
    sunxi gpio set cfgpin(SUNXI GPB(20), SUN5I GPB
    sunxi gpio set pull(SUNXI GPB(20), SUNXI GPIO P
#elif defined(CONFIG MACH SUN6I) && CONFIG CONS IND
    sunxi gpio set cfgpin(SUNXI GPH(20), SUN6I_GPH
    sunxi gpio set cfgpin(SUNXI GPH(21), SUN6I GPH
    sunxi gpio set pull(SUNXI GPH(21), SUNXI GPIO P
#elif defined(CONFIG MACH SUN8I A33) && CONFIG CONS
```

U-Boot SoC runtime

```
switch (sunxi get socid()) {
case SOCID A10:
case SOCID A20:
case SOCID R40:
    mux = SUN4I GPB UARTO;
    tx pin = SUNXI GPB(22);
    rx pin = SUNXI GPB(23);
    break:
case SOCID A13:
                                             // sun5i
    mux = SUN5I GPB UARTO;
    tx pin = SUNXI GPB(19);
    rx pin = SUNXI GPB(20);
    break;
17 FOSDEM 2019
```

DRAM initialisation

- Typically fixed parameters
- Try probing?
- Go with one-size-fits-all, safe values
- DRAM types (LPDDR3, DDR3): try one, if that fail, try other

Detect boards

- Reliable board auto detection is technically impossible
 - and dangerous!
 - But can be achieved for a subset of boards:
 - Uses heuristics: DRAM size, type, I2C/SPI devices, GPIO ...
- Solution: present a list and let the user choose
 - List could be shortened by matching heuristics
 - Each list entry selects one .dtb file
 - FIT image can already hold multiple .dtbs

Status

- "Hello World" single image works on:
 - All Allwinner SoCs
 - Rockchip RK3328 and RK3399 SoCs
 - Amlogic S905 (Odroid-C2)
- U-Boot (and beyond) works on:
 - Boards with Allwinner A64 and H5 SoCs
 - Rock64 and Firefly RK3399 board

Open issues

- SPL needs to know load address at link time (breaks Allwinner H6)
 - Make SPL positition independent
- No mainline SPL support for RK3328
 - (Old?) patches exist, somewhere
- No SPL support for Amlogic SoCs (signed boot code?)
 - Makes coexistence much more complicated
 - Could be tolerated for at most one SoC

Conclusion

- One image can boot multiple boards
- Proof of concept working, but lot of integration work left
- Upstreaming might get interesting ;-)
- Use cases:
 - Distribution installers
 - Firmware flashers
 - Multi-Distribution installers (NOOBS)
 - Your own (bare metal) application

Thank You!

References

- http://linux-sunxi.org/
- https://github.com/apritzel/pine64
- https://github.com/apritzel/simage
- Freenode: @apritzel