Oko: Open vSwitch Extensions with BPF

Paul Chaignon
Orange Labs, France
February 2, 2019
Extending Open vSwitch
Extending Open vSwitch
Extending Open vSwitch
Packet Processing Pipelines

Stage 1 → ... → Stage n
Packet Processing Pipelines

Decap. → L2 switching → ... → L4 ACLs
Packet Processing

Flow Table
- Implemented as packet classifiers
- E.g., Open vSwitch, iptables

Code
- Executed or interpreted
- E.g., BPF, Cilium
Packet Processing

Flow Table
- Implemented as packet classifiers
- E.g., Open vSwitch, iptables

Code
- Executed or interpreted
- E.g., BPF, Cilium

Why limit ourselves to flow tables when running on a CPU?
Flow Caching

Stage 1 → ... → Stage n

Cache
Flow Caching in Open vSwitch
Oko’s implementation

- Implementation on Open vSwitch-DPDK, in userspace
 - Better performance than kernel module
 - Easier to prototype

- Userspace BPF VM based on ubpf

https://github.com/Orange-OpenSource/oko
Oko’s implementation

Implementation includes a partial verifier:

- Prohibits back-edges in CFG
- Checks bounds in memory accesses
- Prevents potential null memory accesses
- Invalidates divisions by zero

Todo:

- Prevent pointer leaks
- Check for unaligned memory accesses
- Optimizations
Extending Software Switches
Figure: Evaluation setup. Packet copies are only necessary when crossing memory space boundaries.
Evaluations

1. Filtering using p0f TCP signatures
 – Compute a signature over TCP option fields

2. Stateful firewall
 – TCP state machine + hash table lookup over 4-tuple

3. Dapper: TCP performance analysis
 – Extract TCP options + hash table lookup over 4-tuple
Evaluations

Figure: Throughput for different packet processing setups
Evaluations

Why is Oko faster than zero-copy process setup?

- No overhead from packet transfers across cores
- Better use of CPU caches
 - With process setup, packets need to be brought in L1 cache
Conclusion

- Oko: extensible Open vSwitch through BPF actions
- Best of code-based and flow table-based pipelines

- Started upstream of work on ubpf
 - Looking for help to review!
 - https://github.com/iovisor/ubpf

- Patch set to OVS with BPF actions (and no need to recirculate)
Thank you for listening!