
MALT & NUMAPROF,
Memory Profiling for HPC

Applications
SÉBASTIEN VALAT – FOSDEM 2019 – TRACK HPC

1

Origin of the tools

 PhD. on memory management for HPC (at CEA/UVSQ)

 MALT, post-doc at Versailles :

 NUMAPROF, side project post-doc work at :

2

Motivation

 Lot of issues today :

 Huge memory space to manage (~TB of memory)

 Lot more distinct allocations (75 M in 5 minutes)

 Multi-threading : 256 threads

 Hidden into large (huge) C/C++/Fortran codes (~1M lines).

 Access:

 NUMA (Non Uniform Memory Access)

 Memory wall !

3

Key today

You need to
well understand memory

behavior of your (HPC)
application !

4

Eg: >1M lines C++ simulation.

On 128 cores / 16 NUMA CPUs

0

50

100

150

200

250

300

350

400

450

500

MPC/NUMA MPC/UMA Glibc jemalloc tcmalloc

E
x
e

c
u

ti
o

n
 t

im
e

 (
s)

User System Idle

My PhD. Available

5

35%

58%
20%

Same about memory consumption

on 12 cores

0

1

2

3

4

5

6

7

8

glibc jemalloc tcmalloc

Physical mem.(GB)

6

2.5x

Tool 1 : MALT

 Memory management can have huge impact

 Tool to track mallocs

 Report properties onto annotated sources

 Same idea than valgrind/kcachegrind

 Annotated sources

 Annotated call graphs

 + Non additive metrics (for inclusive costs, eg. lifetime)

 + Time charts

 + Properties distribution (sizes….)

7

Web based GUI

Metric selector
Inclusive/Exclusive

Symbols Details of symbol or line

Call stacks reaching
the selected

site.

Per line annotation

8

Example of time based view 9

Tool 2 : NUMAPROF

 Based on MALT code

 But about NUMA

 How to detect remote memory accesses

 Unsafe & uncontrolled memory binding

CPU 1

RAM

CPU 1

RAM

10

Some summary views 11

Still source annotation to

understand code

12

Short success

 MALT

 20% CPU saving on my CERN 32 000 C++ code.

 Improvement on 2 commercial simulation codes

 Profiled CERN LHCb 1.5 million line C++ code

 NUMAPROF

 20% perf in 20 minutes on 8000 lines simu.

 NUMA Linux kernel policy bug detected.

 CERN PhD. code NUMA correctness

13

Questions
Both tools under CeCILL-C on http://memtt.github.io

My researches : http://svalat.github.io

14

http://memtt.github.io/
http://svalat.github.io/

Example of success

MALT

 Reduce CPU usage of 30% on the CERN app I was
developing (mistake with C++11)
32 000 C++ lines running on 500 servers.

 Too large allocations in a PhD. Student numerical
simulation running on 500 cores while developing the
tool.

 Realloc pattern in Fortran into an industrial R&D
simulation code

 Unexpected allocs generated by GFortran compiler on
another industrial R&D simulation code.

 Successfully ran on CERN LHCb 1.5M lines online analysis
software

15

for(auto & it : lst)

Example of success

NUMAPROF

 20% performance improvement in 20 minutes on

an unknown 8000 C++ lines simulation on Intel KNL

 Linux Kernel bug detected on NUMA

management in conjunction with Transparent

Huge Pages (while developing the tool).

Was detected at same time by other way by Red-

Hat…. But…..

 Confirmation of NUMA correctness on a
CERN/OpenLab PhD. Student code on Intel KNL

16

