
FOSDEM’19 • Brussels, 2019-02-02

Unifying network filtering rules for the Linux kernel with eBPF

Quentin Monnet
<quentin.monnet@netronome.com>

@qeole

mailto:quentin.monnet@netronome.com
https://twitter.com/qeole

Outline

Several network filtering mechanisms in the Linux kernel

What are they, and what do they do?
How are they used?

Latest addition: eBPF

What does it bring to filter networking?

Increasing number of convergence leads between the different models

What are the objectives?
How can they be unified?

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 2/22

Some network filtering mechanisms in the Linux kernel

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 3/22

Netfilter (iptables/nf_tables)

Framework for packet filtering (firewall), NAT

Often the default choice for dropping flows

Several front-end components (ebtables, arptables, iptables, ip6tables,
nf_tables, conntrack)

Back-end: Netfilter

nf_tables successor to iptables: more flexible, more efficient

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 4/22

Traffic Control filters (tc, iproute2)

TC framework for Traffic Control in the kernel: traffic shaping, scheduling,
policing, dropping

“Queueing disciplines” (qdisc), possibly applied to “classes”

Filters are used to dispatch packets into the different classes
(Traffic control mostly applies to egress traffic, but filters also usable
for ingress)

Framework actually using a variety of filters:
• basic (ematch, “extended match”)
• flow
• flower
• u32
• [bpf]
• Specific filters: fw, route, rsvp, tcindex

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 5/22

Hardware filters (ethtool)

“Receive network flow classification”: Hardware filters

Main objective: flow steering, but able to drop flows

Needs hardware support, not all NICs have it

Rules set with ethtool -U (ioctl)

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 6/22

pcap-filters, cBPF (e.g. for tcpdump)

Facility from the libpcap library

Takes an expression and turns it into a filter

Output is legacy BPF (cBPF), attached to sockets in the kernel
(or run in user space if not on Linux)

Used by tcpdump (see tcpdump -i eth0 -d <expr>)

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 7/22

Filtering hooks

Kernel

Userspace

Hardware (NIC)

Driver

Kernel stack

TC ingress TC egress

Hardware filters
(set up with ethtool)

BPF
on socket

Netfilter egress
(OUTPUT, POSTROUTING)

Netfilter ingress
(PREROUTING, INPUT)

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 8/22

Many rule syntaxes

Example rule: Drop incoming IP(v4) HTTP packets

iptables -A INPUT -i eth0 \
-p tcp --dport 80 -j drop

nft add rule ip filter input iif eth0 \
tcp dport 80 drop

tcpdump -i eth0 \
ip and tcp dst port 80

tc filter add dev eth0 ingress flower \
ip_proto tcp dst_port 80 action drop

ethtool -U eth0 \
flow-type tcp4 dst-port 80 action -1

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 9/22

Many other ways to filter packets

The list is not exhaustive
Other frameworks are available (many of them out of kernel space)

Software switches: Open vSwitch, etc.

User space processing: DPDK (rte-flows), firewall apps, etc.

P4 as another way to implement switches/filters, compile to target

…

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 10/22

Enter eBPF

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 11/22

Introduction to eBPF

Generic, efficient, secure in-kernel (Linux) virtual machine

Event-based programs injected, verified and attached in the kernel

Lightweight Tunnel
Encapsulation

TC
(traffic control)

Cgroups

Perf Event

TracepointXDP
(network driver)

Sockets

Kprobe/Uprobe

Others to come?

Networking

Tracing/Monitoring

Flow Dissector

Infrared
Remote Control

eBPF

Specific features: Maps, tail calls, helper functions

In the rest of the presentation: “BPF” means “eBPF”
Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 12/22

BPF hooks for network packet processing

Kernel

Userspace

Hardware (NIC)

Driver

Kernel stack

TC ingress TC egress

Hardware filters
(set up with ethtool)

BPF
on socket

Netfilter egress
(OUTPUT, POSTROUTING)

Netfilter ingress
(PREROUTING, INPUT)

Agilio SmartNIC

BPF
(TC/XDP offload)

BPF XDP
(“generic”)

BPF XDP
(driver support)

BPF
as TC filter

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 13/22

What BPF brings to network filtering

BPF is POWER!

Programmability (change network processing at runtime)

In-kernel verifier: safety, security of the programs

JIT (Just-in-time) compiler available for main architectures: speed!

Low-level (driver hooks): speed!!

Hardware offload: speed!!!

Also:

Headaches, long nights spent rewriting the filters
Additional pain to pass the verifier

But keep in mind: BPF is self-contained, well defined, flexible
Maybe a good intermediate representation to represent filters?

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 14/22

Convergence of the models

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 15/22

Why unifying?

User side:

Transparently reuse existing set of rules

Benefit from the best of each world: flexibility, ease of use,
performance

Developer side:

Easier to work on a common intermediate representation rather than
on a variety of distinct back-ends

Better uncoupling of the front- and back-ends

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 16/22

flow_rule infrastructure

Work in progress from Pablo Neira Ayuso—No BPF in this one

Intermediate representation for ACL hardware offloads
Based on Linux flow dissector infrastructure and TC actions
Can be used by different front-ends such as HW filters, TC, Netfilter

Kernel

Userspace

Hardware (NIC)

Driver

Kernel front end

Hardware IR

flow_rule IR

TC
(via Netlink)

Hardware filters
(via ioctl)

Netfilter
(via Netlink)

Parses flow_rule IR
to populate HW IR

Translates native
interface representation

to flow_rule IR

Offloads filter
as HW IR

Motivation:

Unified IR passed to the driver: avoid having one parser for each ACL front-end
Stop exposing TC front-end details to drivers (easier to add features to TC)

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 17/22

bpfilter: BPF-based firewall

bpfilter: new back-end for iptables in Linux, based on BPF

The iptables binary is left untouched
Rules are translated into a BPF program
Uses a special kernel module launching an ELF executable in a special thread in
user space, for rule translation
Also: proposal for nf_tables to BPF translation on top of bpfilter

Kernel

Userspace

bpfilter UMH
special thread

bpfilter.ko
module

Netfilter
subsystem

bpfilter
BPF hook

iptables

inject rules translates
rules to eBPF

Motivation:

Reuse rules from iptables
Improve performance (JIT, offloads)

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 18/22

libkefir: a library to convert ACLs to BPF programs

libkefir: KErnel FIltering Rules: Work in progress @ Netronome

Turn simple ACL rules into hackable BPF programs
Motivation similar to bpfilter: reuse rules, with improved performance
But do not try to handle all cases
And give BPF-compatible C source code to users, so they can hack it
Comes as a library, for inclusion in other projects

Kernel

Userspace

TC flower
rules

ethtool rules

pcap-lib
expressions

iptables rules

libkefir

BPF bytecode

BPF program
attached

C source code

Sorry, not published yet!
Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 19/22

Wrapping up

Various frameworks for packet filtering in Linux

BPF is one of them, brings new perspectives in terms of programmability,
performance, speed, speed and speed

Convergence between different models is beginning to emerge:

Easier handling of rules for driver developers (flow_rule IR proposal)
Reuse of existing rules for users (bpfilter, libkefir)
Better performance for those existing set of rules

Also, consider:

P4 as another approach for convergence—BPF is one target
BPF used in other places: Open vSwitch datapath, DPDK
eBPF as a heterogeneous processing ABI (LPC 2018)
Usage of a DSL for producing BPF programs, but targeted at tracing the
Linux kernel: bpftrace

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 20/22

Thank you!

Questions

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 21/22

References

Additional resources:

Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

Why is the kernel community replacing iptables with BPF?
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/

[PATCH net-next,v6 00/12] add flow_rule infrastructure
https://lwn.net/ml/netdev/20181214181205.28812-1-pablo%40netfilter.org/

BPF comes to firewalls
https://lwn.net/Articles/747551/

Bringing the Power of eBPF to Open vSwitch (William Tu et al., LPC 2018)
http://vger.kernel.org/lpc_net2018_talks/ovs-ebpf-lpc18-presentation.pdf

Using eBPF as a heterogeneous ABI (Jakub Kicinski, LPC 2018)
http://vger.kernel.org/lpc-bpf.html#session-8

DPDK documentation, Berkeley Packet Filter Library
http://doc.dpdk.org/guides/prog_guide/bpf_lib.html

Nothing yet on libkefir… Stay tuned!

Q. Monnet | Unifying network filtering rules for the Linux kernel with eBPF 22/22

https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://lwn.net/ml/netdev/20181214181205.28812-1-pablo%40netfilter.org/
https://lwn.net/Articles/747551/
http://vger.kernel.org/lpc_net2018_talks/ovs-ebpf-lpc18-presentation.pdf
http://vger.kernel.org/lpc-bpf.html#session-8
http://doc.dpdk.org/guides/prog_guide/bpf_lib.html

	Some network filtering mechanisms in the Linux kernel
	Enter eBPF
	Convergence of the models

