
Better loopback mounts with NBD

Richard W.M. Jones Red Hat Inc. rjones@redhat.com

February 2019

Abstract

Loopback mounts let you mount a raw file as a device. Network Block
Device with the nbdkit server takes this concept to the next level. You
can mount compressed files. Create block devices from concatenated
files. Mount esoteric formats like VMDK. NBD can also be used for
testing: You can create giant devices for testing. Inject errors on
demand into your block devices to test error detection and recovery.
Add delays to make disks deliberately slow. I will also show you how to
write block devices using shell scripts, and do advanced visualization
of how the kernel and filesystems use block devices.

1 Network Block Device

In the talk there will be an introduction to and history of Network Block De-
vice. I’m not reproducing that here since you can read about the history in ar-
ticles such as https: // www. linuxjournal. com/ article/ 3778 . There
will also be a short introduction to nbdkit, our pluggable, scriptable NBD
server. For now, see https: // github. com/ libguestfs/ nbdkit .

2 Loopback mounts – simple but very limited

Loopback mounting a file is simple:

truncate -s 10M /tmp/test.img

mke2fs -t ext2 /tmp/test.img

losetup -f /tmp/test.img

blockdev --getsize64 /dev/loop0

1

mailto:rjones@redhat.com
https://www.linuxjournal.com/article/3778
https://github.com/libguestfs/nbdkit

4 MOUNTING XZ-COMPRESSED DISKS

10485760

mount /dev/loop0 /mnt

But this talk is about all the things you cannot do with a loopback mount.
What if the file you want to mount is compressed? What if you want to
concatenate several files? What if you want to use another type of storage
instead of a file?

You can’t do those things with a loopback mount, but there is now an alterna-
tive: A loopback Network Block Device, backed by our pluggable, scriptable
nbdkit server. It’s just as simple to use as loopback mounts, but far more
flexible.

3 Preparation

If you want to follow these examples on your own machine, you will need
to install the nbd-client package (on Fedora: nbd), and the nbdkit server.
Most examples require nbdkit ≥ 1.7.3.

Linux Network Block Device is in general very reliable, but there were unfor-
tunately a couple bugs in the latest released version that is present in several
Linux distributions (but fixed upstream).

If your Linux distro ships with NBD 3.17, make sure it includes the following
post-3.17 fix for kernel timeouts: https://github.com/NetworkBlockDevice/
nbd/pull/82

If your Linux distro uses kernel < 4.17, then upgrading to 4.17 or above is
recommended.

You may also need to run this command once before you start:

modprobe nbd

4 Mounting xz-compressed disks

Loopback mounting a compressed disk will expose a block device containing
the compressed data, which is not very useful.

nbdkit has a couple of plugins for handling gzip and xz compressed disks. The
xz plugin is quite efficient, allowing read-only random access to compressed

2

https://github.com/NetworkBlockDevice/nbd/pull/82
https://github.com/NetworkBlockDevice/nbd/pull/82

5 CREATING A HUGE BTRFS FILESYSTEM IN MEMORY

files:

nbdkit xz fedora-26.xz

We can make a loopback mount called /dev/nbd0 using one command:

nbd-client -b 512 localhost 10809 /dev/nbd0

Linux automatically creates block devices for each partition in the original
(Fedora 26) disk image:

ll /dev/nbd0<tab>

nbd0 nbd0p1 nbd0p2 nbd0p3

file -bsL /dev/nbd0p3

SGI XFS filesystem data (blksz 4096, inosz 512, v2 dirs)

mount /dev/nbd0p3 /mnt

mount: /mnt: WARNING: device write-protected, mounted read-only.

cat /mnt/etc/redhat-release

Fedora release 26 (Twenty Six)

To clean up:

umount /mnt

nbd-client -d /dev/nbd0

killall nbdkit

5 Creating a huge btrfs filesystem in memory

nbdkit is not limited to serving files or even to the limits of disk space. You
can create enormous filesystems in memory:

nbdkit memory size=$((2**63 - 1))

nbd-client -b 512 localhost 10809 /dev/nbd0

How big is this? 263 − 1 is about 8.5 billion gigabytes. If you were to buy
that amount of disk at retail it would cost you e 300 million1.

We can partition and create a filesystem just like any other device:

gdisk /dev/nbd0

Number Start (sector) End (sector) Size Code Name

1 1024 9007199254740973 8.0 EiB 8300 Linux filesystem

mkfs.btrfs -K /dev/nbd0p1

1September 2018 prices, WD Red SATA drives bought on Amazon.fr

3

6 CONCATENATING FILES INTO A PARTITIONED DISK

mount /dev/nbd0p1 /mnt

]# df -h /mnt

Filesystem Size Used Avail Use% Mounted on

/dev/nbd0p1 8.0E 17M 8.0E 1% /mnt

When you unmount the NBD partition and kill nbdkit, the device is gone,
making this very useful for testing filesystems.

6 Concatenating files into a partitioned disk

Whereas loopback mounts are limited to a single file, there are several nbdkit
plugins for combining files. One of them is called the “partitioning” plugin,
and it turns partitions into disk images:

$ nbdkit partitioning \

boot.img \

swap.img \

root.img

This time I’ll use guestfish to examine this virtual disk:

$ guestfish --format=raw -a nbd://localhost -i

Welcome to guestfish, the guest filesystem shell for

editing virtual machine filesystems and disk images.

Type: ‘help’ for help on commands

‘man’ to read the manual

‘quit’ to quit the shell

Operating system: Fedora 26 (Twenty Six)

/dev/sda3 mounted on /

/dev/sda1 mounted on /boot

><fs> list-filesystems

/dev/sda1: ext4

/dev/sda2: swap

/dev/sda3: xfs

You can see that the NBD disk contains three partitions2.

2/dev/sdX inside libguestfs is equivalent to /dev/nbd0 on the host

4

8 TESTING A RAID ARRAY

7 Mounting a VMware VMDK file

VMware VMDK disk images are difficult to open on Linux machines. VMware
provides a proprietary library to handle them, and nbdkit has a plugin to
handle this library (the plugin is free software, but the VMware library that
it talks to is definitely not). We can use this to loopback mount VMDK files:

nbdkit vddk file=TestLinux-disk1.vmdk

nbd-client -b 512 localhost 10809 /dev/nbd0

This disk image contains two partitions and several logical volumes. The
Linux kernel finds them all automatically:

file -bsL /dev/nbd0p1

Linux rev 1.0 ext4 filesystem data, UUID=9d1d5cb7-b453-48ac-b83b-76831398232f (needs journal recovery) (extents) (huge files)

file -bsL /dev/nbd0p2

LVM2 PV (Linux Logical Volume Manager), UUID: bIY2oM-CgAN-npqG-gItS-WY6e-wO7d-L6G3Bv, size: 8377444864

ls /dev/vg_testlinux/

lv_root lv_swap

You can read and write to VMDK files this way:

mount /dev/vg_testlinux/lv_root /mnt

touch /mnt/hello

8 Testing a RAID array

Let’s make a RAID array using in-memory block devices. But to test them
we’ll want a way to inject errors into those block devices. nbdkit makes this
easy with its error filter :

nbdkit --filter=error memory size=1G \

error-file=/tmp/error0 error-rate=1 -p 10810

nbdkit --filter=error memory size=1G \

error-file=/tmp/error1 error-rate=1 -p 10811

nbdkit --filter=error memory size=1G \

error-file=/tmp/error2 error-rate=1 -p 10812

nbdkit --filter=error memory size=1G \

error-file=/tmp/error3 error-rate=1 -p 10813

nbdkit --filter=error memory size=1G \

error-file=/tmp/error4 error-rate=1 -p 10814

nbdkit --filter=error memory size=1G \

5

8 TESTING A RAID ARRAY

error-file=/tmp/error5 error-rate=1 -p 10815

We can create 6 NBD devices from these:

nbd-client localhost 10810 /dev/nbd0

nbd-client localhost 10811 /dev/nbd1

nbd-client localhost 10812 /dev/nbd2

nbd-client localhost 10813 /dev/nbd3

nbd-client localhost 10814 /dev/nbd4

nbd-client localhost 10815 /dev/nbd5

And we can create a RAID 5 device on top:

mdadm -C /dev/md0 --level=5 \

--raid-devices=5 --spare-devices=1 \

/dev/nbd{0,1,2,3,4,5}

mdadm: Defaulting to version 1.2 metadata

mdadm: array /dev/md0 started.

mkfs -t ext4 /dev/md0

mount /dev/md0 /mnt

You can see we have 5 drives and 1 spare in the array:

cat /proc/mdstat

Personalities : [raid6] [raid5] [raid4]

md0 : active raid5 nbd4[6] nbd5[5](S) nbd3[3] nbd2[2] nbd1[1] nbd0[0]

4186112 blocks super 1.2 level 5, 512k chunk, algorithm 2 [5/5] [UUUUU]

nbdkit’s error filter is trigger by the presence of the error files /tmp/error*.
By creating these files we can inject errors into specific devices and see how
the RAID array responds.

Firstly I inject errors into /dev/nbd0:

touch /tmp/error0

After a while the kernel notices:

[10804.798999] print_req_error: I/O error, dev nbd0, sector 100360

[10804.868378] md: recovery of RAID array md0

[10805.202631] md/raid:md0: read error corrected (8 sectors at 69928 on nbd0)

[10810.349550] md: md0: recovery done.

Comparing /proc/mdstat before and after:

-md0 : active raid5 nbd4[6] nbd5[5](S) nbd3[3] nbd2[2] nbd1[1] nbd0[0]

+md0 : active raid5 nbd4[6] nbd5[5] nbd3[3] nbd2[2] nbd1[1] nbd0[0](F)

6

10 LOGGING AND VISUALIZATION

shows that the spare drive is now in use and nbd0 is marked as Failed.

I can inject errors into a second drive:

touch /tmp/error1

[11039.428009] block nbd1: Other side returned error (5)

[11039.431659] print_req_error: I/O error, dev nbd1, sector 231424

[11039.448757] block nbd1: Other side returned error (5)

[11039.452367] print_req_error: I/O error, dev nbd1, sector 233280

[11084.767968] md/raid:md0: Disk failure on nbd1, disabling device.

md/raid:md0: Operation continuing on 4 devices.

and now the array is operating in a degraded state. At the filesystem level
everything is still fine.

9 Writing a Linux block device in shell script

nbdkit allows you to write plugins in various programming languages, includ-
ing shell script. In the talk I will demonstrate a Linux block device being
written as a shell script.

10 Logging and visualization

I am planning some visualization tools that will let you see exactly how a
block device is being read and written during common operations like filesys-
tem creation, file allocation, fstrim, and so on. The talk will end with a
demonstration of these tools.

7

	Network Block Device
	Loopback mounts – simple but very limited
	Preparation
	Mounting xz-compressed disks
	Creating a huge btrfs filesystem in memory
	Concatenating files into a partitioned disk
	Mounting a VMware VMDK file
	Testing a RAID array
	Writing a Linux block device in shell script
	Logging and visualization

