Neural commit suggester

Proposing commit messages with ML
Who we are

- Founded in 2001;
- Branches in Milan, Rome and London;
- Market leader in enterprise ready solutions based on Open Source tech;
- Expertise:
 - DevOps
 - Cloud
 - ML
 - BigData and many more...
Motivation for a commit suggester

We could:

● just help the developer in picking a nice message (aid suggestion);
● catch bad commit messages too far from suggestion (gate suggestion);
 ○ *Jenkins rejects the pull request due to lousy commit message!*

We don’t want/need:

● messages based on templates;
● messages that summarize *what* changed and not *why*;
Generation as summarization

Generalize what was the intent of the coder, at least at a low level.

A change of code always comes with a commit message, describing the full change.

In essence, generating a commit message is generating a summary of the changes.
Generation as summarization

Diff patches provide a very focused source of “code-to-summary” mapping.

```yml
--- a/kubernetes/ansible/ansible_config/tasks/docker.yml
+++ b/kubernetes/ansible/ansible_config/tasks/docker.yml
@@ -1,5 +1,8 @@
- name: Create docker default nexus auth
  template:
      src: ../../ansible/roles/docker/files/docker-config_staging.json.j2
- dest: ../../ansible/roles/docker/files/docker-config_staging.json
+ dest: "{{item}}"
  force: true
+ with_items:
+   - ../../ansible/roles/jenkins/files/docker-config.json
+   - ../../ansible/roles/docker/files/docker-config_staging.json
```
Neural Machine Translation to the rescue

We need a way to learn mapping from diffs to a natural language summary.

Machine Translation can help!

The whole point of statistical (and later, neural) machine translation is to infer a mapping between languages, by means of co-occurrences counting or vector embedding manipulations.

We need an architecture and a dataset.
The Google Neural MT architecture
Dataset

- We used the commit data set provided by Jiang and McMillan
 - 2M commits top 1000 Java projects on GitHub.
- Extract first sentence only.
- Only diff patch, no issuer, no commit hash.
- Tokenization for white space, keep camel casing and punctuation.
- No merge/rollback. No diffs > 1MB.
 - 1.8M commits left
- Source token length: 100 max. Target token length: 30 max.
 - 75k commits left
- “Verb - Direct Object” only messages (filtered via CoreNLP POS tagging)
 - 32k commits left
 - 3k testing, 3k validation, the rest 26k for training
Train time

We used Sockeye, a seq2seq framework based on AWS MXNet.

Training happened on a $p2.xlarge$ (Tesla K80) and a $p3.2xlarge$ (Tesla V100).
Results 5 hours (242 epochs, 43k minibatch) later

--- a/src/main/groovy/util/ConfigObject.java
+++ b/src/main/groovy/util/ConfigObject.java
* /
package groovy.util;
- import groovy.lang.Closure;
- import groovy.lang.GroovyObject;
import groovy.lang.GroovyObjectSupport;
import groovy.lang.Writable;
import org.codehaus.groovy.runtime.DefaultGroovyMethods

Human: Removed non-needed imports

Machine: Remove unused import
Results 5 hours (242 epochs, 43k minibatch) later

--- a / python / README
+++ b / python / README
Python to libsvm interface
+ Table of Contents
+- Introduction
+- Installation
+- Usage
+- Examples

Introduction

Human: *add table of contents in python / README*

Machine: *add table of contents in python / README*
Results 5 hours (242 epochs, 43k minibatch) later

--- a / build.gradle
+++ b / build.gradle
buildscript {
 jcenter()
}
dependencies {
 - classpath 'com.android.tools.build:gradle:2.2.0'
 + classpath 'com.android.tools.build:gradle:2.2.2'
}

Human: update gradle

Machine: Updated build tools version
Results 5 hours (242 epochs, 43k minibatch) later

--- a/pom.xml
+++ b/pom.xml
<extension>
<groupId>kr.motd.maven</groupId>
<artifactId>os-maven-plugin</artifactId>
-<version>1.2.2.Final</version>
+<version>1.2.3.Final</version>
</extension>
</extensions>

Human: Upgrade os-maven-plugin to fix an issue with IntelliJ IDEA on Windows

Machine: Upgrade os-maven-plugin to fix the build issue
Attention model plot
Profit? Well…

BLEU score 37.6

CHRF: 40.5

The model has learned:

★ fluent English;
★ very interesting correlations in short commit patches.
Profit? Well… No.

But, overall, the error rate for long patches is embarrassing: a LOT of sentences are totally incoherent with diffs patches. That’s why the dataset is so picked.

Example (and I have piles of this):
 Human: Change default fbo cache size to 0
 Machine: Add unused import for NOPASS.
A nice thing about software technologies

You learn the most out of them by watching them fail
Extremely difficult task in practice

Vanilla MT architecture not optimized for task.

- **Length imbalance**: input sentences 2-10x longer than output.
- **Decoder RNN is fluent**: output within 10 tokens on average.
- **Poor context performance**: due to encoder RNN length, difficult for LSTM to remember 500 words context. Sentence complexity affects negatively Attention model, who can’t keep up with such a big and sparse state.
- **Memory problems**: GNMT trains well, Transformer goes OOM immediately.
A better architecture proposal: HAN-NMT

The main source of chaos stems from the input length and complexity: we cram together *insertions*, *ablations* and *context*.

It would make much more sense to adopt a multi-encoder network:

- 1 encoder for insertions;
- 1 encoder for ablations;
- 1 encoder for context;
- Hierarchical Attention Network to rule out uninfluential encoders;
- 1 decoder for the output.

Much in the spirit of Transformer multi-headed attention.
Remember this?

Diff patch provides a natural way to separate contexts.
Motivation for HAN-NMT

Input complexity is factored into separate contexts. Speed in unimpacted (same number of matmul +3) but precision should improve.
Traditional attention
Hierarchical Attention Network

generate words against weighted context of insertion and ablation (and current state)

computes weight against ablation

computes weight against insertion

global attention

generate words against weighted context of insertion and ablation (and current state)

computes weight against ablation

computes weight against insertion
TO BE CODED...
Thanks for the attention

aijainai/vanilla-neural-commit-suggester