
Neural commit suggester
Proposing commit messages with ML

Alberto Massidda

Who we are

● Founded in 2001;

● Branches in Milan, Rome and London;

● Market leader in enterprise ready solutions based on Open Source tech;

● Expertise:

○ DevOps

○ Cloud

○ ML

○ BigData and many more...

Motivation for a commit suggester
We could:

● just help the developer in picking a nice message (aid suggestion);
● catch bad commit messages too far from suggestion (gate suggestion);

○ Jenkins rejects the pull request due to lousy commit message!

We don’t want/need:

● messages based on templates;
● messages that summarize what changed and not why;

Generation as summarization

Generalize what was the intent of the coder, at least at a low level.

A change of code always comes with a commit message, describing the full change.

In essence, generating a commit message is generating a summary of the changes.

Generation as summarization

--- a/kubernetes/ansible/ansible_config/tasks/docker.yml
+++ b/kubernetes/ansible/ansible_config/tasks/docker.yml
@@ -1,5 +1,8 @@
 - name: Create docker default nexus auth
 template:
 src: ../../ansible/roles/docker/files/docker-config_staging.json.j2
- dest: ../../ansible/roles/docker/files/docker-config_staging.json
+ dest: "{{item}}"
 force: true
+ with_items:
+ - ../../ansible/roles/jenkins/files/docker-config.json
+ - ../../ansible/roles/docker/files/docker-config_staging.json

Diff patches provide a very focused source of “code-to-summary” mapping.

Neural Machine Translation to the rescue
We need a way to learn mapping from diffs to a natural language summary.

Machine Translation can help!

The whole point of statistical (and later, neural) machine translation is to infer a
mapping between languages, by means of co-occurrences counting or vector
embedding manipulations.

We need an architecture and a dataset.

The Google Neural MT architecture

Dataset
● We used the commit data set provided by Jiang and McMillan

○ 2M commits top 1000 Java projects on GitHub.
● Extract first sentence only.
● Only diff patch, no issuer, no commit hash.
● Tokenization for white space, keep camel casing and punctuation.
● No merge/rollback. No diffs > 1MB.

○ 1.8M commits left
● Source token length: 100 max. Target token length: 30 max.

○ 75k commits left
● “Verb - Direct Object” only messages (filtered via CoreNLP POS tagging)

○ 32k commits left
○ 3k testing, 3k validation, the rest 26k for training

Train time
We used Sockeye, a seq2seq framework based on AWS MXNet.

Traning happened on a p2.xlarge (Tesla K80) and a p3.2xlarge (Tesla V100).

Results 5 hours (242 epochs, 43k minibatch) later

--- a/src/main/groovy/util/ConfigObject.java

+++ b/src/main/groovy/util/ConfigObject.java

* /

package groovy.util;

- import groovy.lang.Closure;

- import groovy.lang.GroovyObject;

import groovy.lang.GroovyObjectSupport;

import groovy.lang.Writable;

import org.codehaus.groovy.runtime.DefaultGroovyMethods

Human: Removed non-needed imports

Machine: Remove unused import

Results 5 hours (242 epochs, 43k minibatch) later
--- a / python / README

+++ b / python / README

Python - to - libsvm interface

+ Table of Contents

+ = = = = = = = = = = = = = = = = =

+

+ - Introduction

+ - Installation

+ - Usage

+ - Examples

+

Introduction

= = = = = = = = = = = =

Human: add table of contents in python / README

Machine: add table of contents in python / README

Results 5 hours (242 epochs, 43k minibatch) later

--- a / build . gradle

+++ b / build . gradle

buildscript {

 jcenter ()

}

dependencies {

 - classpath ' com . android . tools . build : gradle : 2 . 2 . 0 '

 + classpath ' com . android . tools . build : gradle : 2 . 2 . 2 '

}

}

Human: update gradle

Machine: Updated build tools version

Results 5 hours (242 epochs, 43k minibatch) later

--- a / pom . xml

+++ b / pom . xml

< extension >

< groupId > kr . motd . maven < / groupId >

< artifactId > os - maven - plugin < / artifactId >

- < version > 1 . 2 . 2 . Final < / version >

+ < version > 1 . 2 . 3 . Final < / version >

< / extension >

< / extensions >

Human: Upgrade os - maven - plugin to fix an issue with IntelliJ IDEA on Windows

Machine: Upgrade os - maven - plugin to fix the build issue

Attention model plot

Profit? Well…

BLEU score 37.6

CHRF: 40.5

The model has learned:

★ fluent English;
★ very interesting correlations in short commit patches.

Profit? Well… No.
But, overall, the error rate for long patches is embarrassing:
a LOT of sentences are totally incoherent with diffs patches.
That’s why the dataset is so picked.

Example (and I have piles of this):
Human: Change default fbo cache size to 0
Machine: Add unused import for NOPASS .

A nice thing about software technologies

You learn the most out of them
by watching them fail

Extremely difficult task in practice

Vanilla MT architecture not optimized for task.

● Length imbalance: input sentences 2-10x longer than output.

● Decoder RNN is fluent: output within 10 tokens on average.

● Poor context performance: due to encoder RNN length, difficult for LSTM to
remember 500 words context. Sentence complexity affects negatively
Attention model, who can’t keep up with such a big and sparse state.

● Memory problems: GNMT trains well, Transformer goes OOM immediately.

A better architecture proposal: HAN-NMT
The main source of chaos stems from the input length and complexity:
we cram together insertions, ablations and context.

It would make much more sense to adopt a multi-encoder network:

● 1 encoder for insertions;
● 1 encoder for ablations;
● 1 encoder for context;
● Hierarchical Attention Network to rule out uninfluent encoders;
● 1 decoder for the output.

Much in the spirit of Transformer multi-headed attention.

Remember this?

--- a/kubernetes/ansible/ansible_config/tasks/docker.yml
+++ b/kubernetes/ansible/ansible_config/tasks/docker.yml
@@ -1,5 +1,8 @@
 - name: Create docker default nexus auth
 template:
 src: ../../ansible/roles/docker/files/docker-config_staging.json.j2
- dest: ../../ansible/roles/docker/files/docker-config_staging.json
+ dest: "{{item}}"
 force: true
+ with_items:
+ - ../../ansible/roles/jenkins/files/docker-config.json
+ - ../../ansible/roles/docker/files/docker-config_staging.json

Diff patch provides a natural way to separate contexts.

Motivation for HAN-NMT
--- a/kubernetes/ansible/ansible_config/tasks/docker.yml
+++ b/kubernetes/ansible/ansible_config/tasks/docker.yml
@@ -1,5 +1,8 @@
 - name: Create docker default nexus auth
 template:
 src: ../../ansible/roles/docker/files/docker-config_staging.json.j2
- dest: ../../ansible/roles/docker/files/docker-config_staging.json
+ dest: "{{item}}"
 force: true
+ with_items:
+ - ../../ansible/roles/jenkins/files/docker-config.json
+ - ../../ansible/roles/docker/files/docker-config_staging.json

ablation encoder

insertion encoder

context encoder context attention

ablation attention

insertion attention

global attentiondecoderoutput
message

Input complexity is factored into separate contexts.
Speed in unimpacted (same number of matmul +3) but precision should improve.

Traditional attention

h1 h2 ... hn

x1 x2 ... xn

s0 s1 ... sn-1

y1 y2 ... yn

global attention

Hierarchical
Attention
Network

h1 h2 ... hn

x1 x2 ... xn

ablation attention

h1 h2 ... hn

x1 x2 ... xn

insertion attention

global attention h0

y1

computes weight
against ablation

computes weight
against insertion

generate words against weighted
context of insertion and ablation

(and current state)

Thanks for the attention

aijanai/vanilla-neural-commit-suggester

https://github.com/aijanai/vanilla-neural-commit-suggester

