
Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

A microkernel written in Rust

Porting the UNIX-like Redox OS to Arm v8.0

Robin Randhawa

Arm

February 2019



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

on

I want to talk about



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
Redox is written in Rust - a fairly new programming language



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
So it is important to discuss Rust too



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
My goals with this presentation are

● Lightweight intro to the Rust language
● Unique features that make it shine

● Introduce Redox’s history, design, community
● Status, plans

To 
primarily 

talk about
these

● Explain why Rust is interesting for arm
● Rust’s support for arm designs

… and some relevant anecdotes from the industry



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

Open Source Software Division

Firmware

System Software Architecture Team

Kernel PlatformMiddleware

Safety Track

Track Charter
“Promote the uptake of Arm IP in 

safety critical domains using 
open source software as a 

medium”



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

Operating 
system 
design

Systems 
programming 

languages

Arm 
architecture 
extensions

Arm based 
system 
design

Open source 
communities

Software 
Standards for 
Arm systems

My areas of Interest



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

Operating 
system 
design

Systems 
programming 

languages

Arm 
architecture 
extensions

Arm based 
system 
design

Open source 
communities

Software 
Standards for 
Arm systems

Safe data fusion 
and 

perception

Primary focus area



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
Data fusion and perception pipeline

Camera array

LIDAR array

Radar  array

SONAR  array

Sensor block

IO concentrator

Data format 
standardisation

General purpose compute cluster

General purpose 
compute cluster

Inference block

Pre-trained NNs

Lane/Sign/Pedestrian 
detection

Goal solving algorithms

Mechatronic Interfaces

Brake control

Steering 
control

Power train 
control

Fuel Injection 
control

Actuators



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
My explorations needed something at this intersection

Microkernel based 
system software 

composition

Safety themed 
systems programming 

languageArm architecture and 
system design

?



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
I started writing my own microkernel in Rust…. then chanced upon Redox OS

Microkernel based 
system software 

composition

Safety themed 
systems programming 

languageArm architecture and 
system design



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
I see a worrying paradox in the making...



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
The compute requirement for automotive autonomous functions is insanely high

N
ot

io
na

l p
ea

k 
si

ng
le

-th
re

ad
 c

om
pu

te

Time

Brake control
Power train

Fuel injection

In vehicle 
infotainment

Autonomous 
Control



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

N
ot

io
na

l p
ea

k 
si

ng
le

-th
re

ad
 c

om
pu

te

Time

Brake control
Power train

Fuel injection

In vehicle 
infotainment

Autonomous 
Control

“Traditional” partition

● Advent in the late ‘80s
● Initially microcontroller class cores (similar to Cortex-M)
● Later augmented with specialised cores to support 

deterministic operation (Cortex-R)
● In order cores with simple pipelines
● Redundant Execution often used

The compute requirement for automotive autonomous functions is insanely high



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

N
ot

io
na

l p
ea

k 
si

ng
le

-th
re

ad
 c

om
pu

te

Time

Brake control
Power train

Fuel injection

In vehicle 
infotainment

Autonomous 
Control

IVI partition

● Advent in the mid ‘90s
● High performance Cortex-A cores
● Multi-issue instructions
● Out of order execution
● Sophisticated branch prediction

The compute requirement for automotive autonomous functions is insanely high



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

N
ot

io
na

l p
ea

k 
si

ng
le

-th
re

ad
 c

om
pu

te

Time

Brake control
Power train

Fuel injection

In vehicle 
infotainment

Autonomous 
Control

Autonomous control partition

● Advent in the mid 2000s
● High performance Cortex-A cores
● High performance accelerators (ML et al)
● Insanely high compute requirement
● Orthogonal demands on determinism

The compute requirement for automotive autonomous functions is insanely high



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
Autonomous control has very high criticality requirements

Autonomous 
control

In vehicle 
infotainment

Brake control
Fuel injection
Power train 

control

N
ot

io
na

l d
eg

re
e 

of
 c

rit
ic

al
ity

High 
criticality

Low 
criticality



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
In general, the sensitivity to deterministic execution and the degree of criticality are linearly related

Degree of criticality

Determinism: the requirement 
to respect a worst case 
execution time that is 

known apriori

N
ot

io
na

l s
en

si
tiv

ity
 to

 d
et

er
m

in
is

m

Highly 
Deterministic

Low 
Determinism

Low
Criticality

High
Criticality



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
In general, a processor’s performance and it’s “reaction time” are linearly related

Core performance

Pr
oc

es
so

r r
ea

ct
io

n 
tim

e 
to

 a
sy

nc
hr

on
ou

s 
ev

en
ts

High time quantums

Low time quantums
Low

performance
High

performance

Reaction time: the worst case 
duration of time between the 

activation of an asynchronous 
event and it’s acknowledgement 

by the processor core



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
In summary...

● Autonomous control has very high criticality requirements

● Autonomous control has very high performance requirements

● High criticality requires very deterministic execution

● The higher the processor’s performance the slower it’s reaction time

● Paradox: For autonomous functions, the required higher performance 
seemingly cannot be had deterministically and with low reaction times



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Microkernels Rust Redox
What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

There is a thin line between safety and security

Complexity is on the rise...



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
Insanity



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
So...

Autonomous functions are becoming increasingly pervasive

Hardware engineers are working hard to make the hardware sensibly safe

Despite their best attempts, it is very likely that software for such systems will be exceedingly complex

Any and every attempt to make complex software safe is welcome



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
Traditional approaches to the problem

Mixed criticality hardware and software designs

Traditional quality management of hardware and software

Reliance on “safe dialects” of C (MISRA et al)

Formal verification of hardware and software

How about: 

A language designed for safety that provides guarantees without compromising performance ?



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
We can’t let this...



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox
Into this...

Ohai Bro!
How about 
some 

Kovfeefe ?



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox

https://www.rust-lang.org/

fn main() {
    println!("Hello, world!");
}



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

“Rust is like doing parkour while suspended on strings & wearing 
protective gear. 

Yes, it will sometimes look a little ridiculous, but you'll be able to do all 
sorts of cool moves without hurting yourself.”

- Snippet from Reddit conversation about Rust

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

“It wasn’t always so clear, but the Rust programming language is 
fundamentally about empowerment: no matter what kind of code you 
are writing now, Rust empowers you to reach farther, to program with 

confidence in a wider variety of domains than you did before.”

- The Rust Book Introduction

(https://doc.rust-lang.org/book/)

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

use std::process::Command;

Command::new("ls")
        .arg("-l")
        .arg("-a")
        .spawn()
        .expect("ls command failed to start");

Objectives Introduction Rust Redox

“Rust is very expressive”

“I often use Rust instead of Python or Ruby”

- Me



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

    /// Map a page to a frame
    pub fn map_to(&mut self, page: Page, frame: Frame, flags: EntryFlags) -> MapperFlush {
        let p3 = self.p4_mut().next_table_create(page.p4_index());
        let p2 = p3.next_table_create(page.p3_index());
        let p1 = p2.next_table_create(page.p2_index());

        p1[page.p1_index()].set(frame, flags | EntryFlags::PRESENT);
        MapperFlush::new(page)
    }

Objectives Introduction Rust Redox

“Rust’s expressiveness is great for making complex systems software 
concepts accessible”

- Me 
(again)



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

“The performance of machine code generated from idiomatic Rust is typically at par or 
better than machine code generated from idiomatic C++”

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● With Rust

○ You can’t forget to explicitly initialise variables
○ You can’t overflow an array
○ You can’t forget to free memory allocated on the heap
○ If shared data is protected by a lock, you cannot forget to take the lock first
○ You cannot have a dangling pointer
○ A double free of memory is not possible
○ Use after free of memory is not possible
○ Generally speaking there is no undefined behaviour

.. and this is all checked at compile time for you

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust is actually a combination of 2 languages: Safe Rust and Unsafe Rust

○ Safe Rust
■ Is the default
■ Using it will ensure that you have no type safety or memory safety issues
■ Even for concurrently executing code
■ The compiler checks this for you
■ Clever static analysis ensures there is no performance hit
■ Code generated from idiomatic Safe Rust is typically better performing or at 

par to Code generated from idiomatic C, C++
■ Safe Rust limits the programmer from using “raw” pointers

○ Unsafe Rust
■ Is enabled by explicitly annotating code as unsafe
■ Disables the comprehensive compiler checks to permit C/C++ like type and 

memory operation
■ Code generated from unsafe Rust is typically at par with C and C++

● Basically, Rust enables the programmer to opt out of it’s strict safety rules if desired
● Annotating unsafe code means that if there is a failure, you know exactly where the 

problem is - unlike C and C++ where for similar situations you may not be able to tell 
easily

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust is

○ Not an interpreted language

■ Rust code is compiled to native machine code

○ Has no garbage collector and none of the associated non-determinism

■ Instead, rust’s rules ensure correct alloc/dealloc of memory including across 
concurrent contexts: all checked at compile time!

○ Is a statically typed language
■ The compiler requires the types of all variables to be known at compile time
■ But the compiler is smart and can infer types itself many cases

○ Before compilation succeeds, Rust requires the programmer to:

■ Acknowledge any possibility of error
■ Take some suitable action

This is unlike most languages that put the onus for error checking on the 
programmers…. Who are lazy….

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust doesn’t have any exception handling!

○ Instead Rust groups errors into recoverable and non-recoverable error types

○ For managing recoverable errors Rust provides a special type: Result<T,E>

■ This type enables intuitive error introspection without the possibility of 
neglecting any outcome

○ For unrecoverable errors, Rust has the panic! Macro

■ The macro enables consistent responses to such errors without any 
ambiguous side effects

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Data is immutable by default in Rust

○ Simple idea - shaves off a significant set of memory safety problems
○ If data is immutable by default - you can’t change it unless you first declare it as 

mutable

fn main() {
    let x = 5;
    println!("The value of x is: {}", x);
    x = 6;
    println!("The value of x is: {}", x);
}

error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
  |
2 |     let x = 5;
  |         - first assignment to `x`
3 |     println!("The value of x is: {}", x);
4 |     x = 6;
  |     ^^^^^ cannot assign twice to immutable variable

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust has no numerical type-width ambiguity

○ Unlike C and C++, Rust’s types encode the type-width in the type names

■ Unsigned integers

● u8 u16 u32 u64 u128 
● usize (machine word size)

■ Signed integers

● i8 i16 i32 i64 i128
● isize (machine word size)

■ Floats

● f32 f64

● Rust is generally better defined and not ambiguous as other systems languages like C, 
C++

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust doesn’t have C++ like classes

○ Rust has C-like structs for creating programmer defined composite types

struct Record {
    id: u32,
       data: Vec<u32>,

}

○ Structs have functions associated with them that enable the expression of type 
specific behaviours

○ Behaviours can be specified across types using the concept of Traits
■ Traits express an interface each type is required to have

○ Rust is like C++ but without the baggage of Classes, multiple inheritance 
complexity etc

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust has generics

○ For types, methods and more

struct Point<T> {
    x: T,
       y: T,

}

fn main() {
    let integer = Point { x: 5, y: 10 };
    let float = Point { x: 1.0, y: 4.0 };
}

● Traits express desired behaviours from types
● Including abstract generic types
● “Trait Bounds” allow functions to place compile time restrictions on type arguments

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust has Atomics

○ With support for expressing the desired memory consistency when 
working with Atomic types

■ Relaxed, Release, Acquire, AcqRel, SeqCst

○ Memory consistency semantics follow LLVM’s model (C11)

○ Easy to implement common synchronisation primitives using these 
Atomic types and Rust’s automatic reference counting mechanisms

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Ownership
○ Rust requires that every data item have an associated owner (variable)
○ When data is passed around, the ownership changes
○ Once ownership has changed attempting access to the data is 

prevented at compile time

● Borrowing
○ But passing data around implies expensive copying (for anything but 

trivial types)
○ Rust permits sharing data using the concept of borrowing references to 

the data
○ Just like other types, references are immutable by default
○ Rust explicitly checks that

■ There is only every 1 mutable reference to a given data item 
across all scoped

■ Multiple immutable references are permitted
■ Mutable and immutable references cannot mix

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust has excellent support for Threads

use std::thread;
use std::time::Duration;

fn main() {
    thread::spawn(|| {
        for i in 1..10 {
            println!("hi number {} from the spawned thread!", i);
            thread::sleep(Duration::from_millis(1));
        }
    });

    for i in 1..5 {
        println!("hi number {} from the main thread!", i);
        thread::sleep(Duration::from_millis(1));
    }
}

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust has a very rich standard library
○ Large collection of optimised modules
○ Vectors, Strings, Hashes maps etc

● Rust has super useful functional patterns
○ Iterators, generators, closures

● Rust has built-in support for test expression
○ With tooling to run and benchmark tests

● Rust supports generating documentation from code
○ Modern tooling that autogenerates HTML etc

● Rust has very good foriegn function interfacing capability
○ Call Rust code from other languages
○ Call other languages from Rust

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Tools
○ Rustup

■ Painless rust toolchain installation/maintenance/update
■ Painless toolchain target architecture switching

○ Cargo
■ Rust package manager
■ Like Ruby’s gems or Python’s pypi but way better
■ Cargo packages are called ‘crates’
■ Cargo uses semantic versioning for crates for guaranteed 

dependency fingerprinting and replication
■ Cargo works with the crates.io central package repository
■ Seamless recompilation of crates to compiler supported toolchain 

targets

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● My Rust ramp up sequence

○ The Rust Book

○ Rust by Example

○ The Rust Nomicon

○ The Rust Reference

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Was Rust genuinely useful for implementing a microkernel ?

○ Yes

○ unsafe Rust made it very easy for me to locate and root out 
correctness problems

○ The expressive nature of the language made it a pleasure to design 
and implement MMU abstractions

○ Interop with asm code was a breeze - the #[naked] decorator was 
useful

○ Writing synchronization code with abstract memory model expectations 
in Rust without needeing asm code was neat

○ The module subsystem was particularly useful

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● What next for Rust and Arm ?

○ The Cortex-A embedded Working Group
○ The Cortex-M embedded Working Group
○ The Rust language specification Working Group (doesn’t exist yet)
○ The RustBelt project

Objectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Objectives Introduction Microkernels Rust Redox
What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Objectives Introduction Rust Redox

https://www.redox-os.org/



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● An MIT licensed UNIX-like OS stack written in Rust

● With a Rust microkernel at its core

● Implements a reduced set of UNIX system calls

● Re-implements most UNIX components in Rust

● Provides a POSIX compliant C library - also written in Rust

Objectives Introduction Microkernels Rust Redox
What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Objectives Introduction Rust RedoxObjectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Rust (the chemical process) involves oxidation

● Redox (the chemical process) includes oxidation

● Redox sounds like UNIX (kind of)

● Rolls off the tongue easily!

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Leverage Rust

○ Showcase safe and secure software development using Rust

○ Use idiomatic Rust to make complex system software internals accessible to the lay 
programmer

● Leverage existing software

○ Enable easily re-building applications for existing UNIXen to run under Redox

● Cover a wide range of target domains

○ The primary focus has been the desktop domain

○ The currently emerging focus is the embedded domain

○ Long term goal is to target servers

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Written by Jeremy Soller (System76)

○ Initially tinkered with x86_64 assembly to “learn how computers work”

○ Was aiming to write a simple context switching mini-kernel in assembly for his 
PC

○ Had many headaches as a result but learnt a lot about pitfalls in low level OS 
design

○ Discovered Rust and found that Rust’s feature set was an excellent fit for safe, 
low level programming

○ Wrote incrementally complex bits using Rust: a simple bootloader, a mini 
graphics stack, an IO stack for mice and keyboards, a task scheduler

○ Got to a desktop environment and shared on github

● Then in 2015, someone told Reddit

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Steady development since then

○ EFI OS loader
○ C library
○ Pthreads support
○ RedoxFS file system
○ Driver library
○ Growing list of ported applications

● Google Summer of Code 2017

○ Made Redox self hosting

● Redox Summer of Code 2018

○ Added support for booting from ext2 filesystems
○ Began work on porting to Arm

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Apps, libs

● Drivers

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

EFI capable OS 
loader

Diagnostic 
console

Heartbeat 
driver

Context 
manager

Interrupt 
controller driver

Schemes

: initfs: env: irq: event: pipe: sys: mem: zero:

Userspace

Kernel

Graphics 
drivers

Network
drivers

Disk 
drivers

Graphics
stack

Network
stack Filesystems

Window 
manager

Network 
servers

Misc 
drivers

Misc 
Servers

Misc appsFilesystem 
servers

Hardware

pty: rand: network: tcp: udp: ethernet: file: display: disk:

Init runlevels

The Redox Stack

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Redox subscribes to Plan 9’s “everything is a file” philosophy but with a twist: 
In Redox everything is a URL

● This has resulted in a consistent, clean and flexible interface
○ No confusing semantic recursions: “The rootfs is on a disk which 

contains device nodes at /dev including node sda which represents the 
disk containing the rootfs which…” 

○ No special file odditties: “What’s the size of /dev/null ?”

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● As opposed to traditional filesystem hierarchies, resources are distinguished by 
protocol based Schemes identified by URL

○ Eg: EHCI capable USB devices are accessed via the “usb:/ehci” scheme
○ Eg: Real files are accessed using the “file:/” scheme

● Each Scheme handles a section of the filesystem namespace
● Each Scheme is implemented in user-space with support from the kernel
● Applications communicate using URLs with each other, the system, with daemons 

and so on

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Written in Rust
● Provides user-space with primitives for 

○ Physical memory access
○ Interrupt handling
○ Synchronisation with futexes

● Supports containerisation through scheme namespaces
○ Processes can be put into a “null” namespace
○ Doing so enables a per-process capability mode
○ Fine grained per-process access control

● SMP support
○ Simple “spread-out” scheduling at present

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● The question of virtualization and Redox
○ There is no support for virtualization at present
○ Current thinking

■ Support rebuilding software against relibc to run on Redox
■ Rather than support running unmodified software as is traditionally done

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Aiming to be a POSIX compliant C library written in Rust
○ Uses cbindgen for FFI’ing with C code

● Targets Redox and Linux environments
○ Enables running Linux apps under Redox
○ Enables running Redox apps under Linux
○ The latter uses an extension called Rine

● Relibc aims to be Linux compatible
○ At the syscall API level
○ At the syscall ABI level (for a given architecture)

● Rust linkage
○ The Rust compiler is built for the x86_64-unknown-redox triplet
○ Associated with relibc to support building Redox applications

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Scoping the port

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Studied the Redox x86_64 kernel port and 
asked a lot (a LOT) of questions on the 
redox kernel Mattermost channel

● Identified spots where x86_64 assumptions 
existed

● Decided to restrict the port to Armv8.0 and 
support only the AArch64 execution state

● Settled on qemu’s virt machine emulation 
for AArch64 as the initial platform target

○ Cortex-A57 x 1
○ 1 GB RAM
○ Generic timers
○ GICv2
○ PL011 UART
○ SP804 timers
○ PL031 RTC
○ E1000 ethernet
○ PCI-ECAM host controller

FDT support

The Arm porting saga

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Scoping the port

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Wrote down the scope and published it on 
the Redox gitlab

● Began speaking with Arm legal eagles to 
get approvals

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Scoping the port

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Studied the rust compiler toolchain at a 
high level (rustc, MIR, LLVM)

● Built it from source and played around with 
generating Linux app binaries and 
bare-metal code for AArch64

● Looked at the x86_64-unknown-redox 
support code in LLVM and wrote analogous 
bits to add support for the 
aarch64-unknown-redox triple

● Rinse-repeat until I rustup told me that it 
recognised this triple

● Lots of intermediate testing to verify that 
the generated code was sane

● Added support for the 
aarch64-unknown-redox triple to binutils 
and GCCFDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Scoping the port

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Ran into trouble with Rust’s #[thread_local] 
TLS decorator

#[thread_local]
static CPU_ID: AtomicUsize = ATOMIC_USIZE_INIT;

● Produced:
  20:   d53bd041        mrs     x1, tpidr_el0
  24:   8b000020        add     x0, x1, x0

● This is fine for user-mode TLS accesses at 
EL0 but the Redox kernel uses TLS for 
per-cpu data. Using tpidr_el0 at EL1 == boom

● I could have changed the kernel but was 
intrigued enough to try and fix LLVM (!)

● Modded LLVM to conditionally emit tpidr_el1 
for any code compiled by the rust front-end 
using the “kernel” code-model. Problem 
solved!

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Desired qemu’s GDB stub to work with a 
multi-arch GDB client for both user-space and 
kernel space debugging

● Ran into trouble with GDB and EL1 access 
any attempt to “see” code at high virtual 
addresses would result in odd values

○ Seemingly impacted my bare-metal 
boot stub and even Linux (!)

○ Traced GDB
○ Traced GDB debug protocol
○ Banged my head on walls
○ Produced a reliable reproducer test 

case
○ Reported to GDB upstream
○ Worked with Linaro developers to 

resolve
● Came up with a kernel and user-land 

instruction tracing flow with qemu (super 
useful!)

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Stitched together a bootflow using the u-boot 
bootloader

● u-boot grew support for qemu’s aarch64 virt 
machine

● My boot flow used qemu’s tftp emulation and 
u-boot’s ethernet capability to fetch a stub 
Redox kernel image from the host filesystem 
to the guest memory

● Got necessary environment info from u-boot 
through to the Redox kernel using standard  
Device Tree nodes (“/chosen”)

● Verified GDB operation at the u-boot stage 
and the Redox kernel stage

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Replicated x86_64 kernel code structure (with 
a set of necessary mods for aarch64)

● Stubbed everything out
● Specified a linker script and got a linkable 

kernel image
● Verified that execution ends up in the kernel
● Started writing early init boot code in aarch64 

assembly
○ Correct exception level transitioning
○ Virtual address range specification
○ Identity mapping the kernel code, data, 

stack, FDT images etc
○ Enabling the MMU using 

■ 4 level page tables
■ 48-bit VAs
■ 2 MB Blocks
■ recursive paging

○ Created a Rust environment
○ Jumped to Rust code

● Verified everything with GDB

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Fleshed out a recursive paging 
implementation for aarch64

○ Recursive paging gets you easy and 
performant page table manipulation

○ But wastes virtual address space
○ Not a concern at present

● Wrote code to map, unmap virtual address 
ranges

● Elf interpretation and section specific memory 
attribute mapping etc

● Got the kernel to successfully tear down the 
MMU mappings set up by the boot asm code 
and replace it with comprehensive paging with 
4 KB pages

○ Mapped in the kernel code, data, stack, 
FDT image

○ Mapped in a diagnostic UART
● Redox kernel said “Hello World”!!!

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Added basic drivers
○ Generic Interrupt Controller
○ Generic Timer
○ PL011 UART
○ PL031 RTC
○ SP804 Timer

● Verified operation with GDB and simple test 
code

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Added stack frame unwinding support
● Needed this to make sense of panic traces
● No symbol resolution support but was super 

useful even so

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Added aarch64 support to relibc
○ Syscall asm stubs
○ Syscall stack frame descriptions etc

● Lots of time spent trying to get this working 
properly with the rust toolchain

○ Redox community were super useful as 
always

● Mixed the relibc code into the main Redox 
kernel

● Wrote kernel side asm code to process 
syscalls

○ Syscall vectors
○ Context save and restore
○ Plugging into core kernel syscall 

machinery
● Got init to build and link successfully
● The stage was set to get user-land up!

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Extended the x86_64 live disk to aarch64
○ Used it to build initfs + kernel image + 

live disk image blob
● Got the live disk image to load reliably with 

GDB’s help
● Then tried to get init to be loaded into RAM 

and executed
● Gnashed and wailed for a long time before this 

finally worked
○ Lots of subtleties with ELF loading needed 

special care
○ Mapping Redox’s higher level ELF section 

attributes to aarch64 page descriptor attributes 
was trickier than I had anticipated

○ Didn’t have enough mutually exclusive spare 
bits between page tables and page descriptors

■ Needed to keep track of page and page 
table usage

○ Came up with an arcane hack
■ It worked!!!

● /sbin/init ran and said Hello!

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Fleshed out essential syscall support code
○ fork, clone, dup, dup2 etc
○ Trickier than I imagined!

● Got initscript going
● Attempted to launch user-mode device drivers

○ Failed miserably
○ Found missing gaps in page table 

manipulation - filled
● Got to a point where a bunch of user-space 

contexts could be launched but had no context 
switching support yet

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Implemented context switching code
● Rinse repeat

○ User to kernel, user to user
○ Further syscall pathway enhancements

● Got multiple Contexts switching co-operatively
● Next step was asynchronous context switching

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Added interrupt context save-restore support
● Hooked in the GIC
● Set up the Generic Timer to interrupt at 10ms 

intervals
● Added cheduler hooks for optional context 

switching
● Verified pre-emptive context switching across 

multiple contexts with simple tests

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● FDT support for drivers
● Got timely help from the Redox community

○ They gave me a DT interpreter crate 
that could work without relying on the 
Rust standard library

● Used it to incrementally remove static 
assumptions from the drivers and replace 
them with information from the device tree 
(address maps, interrupt mappings etc)

● This is still ongoing

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Simplified the live disk support
○ Using qemu’s raw memory device 

emulation made it possible to pre-load 
RAM with the live disk image

○ Super fast booting! Great for rapid 
debug cycles.

○ Live disk image was weighing in at 256 
MB - lots more work needed there but 
the raw memory device emulation 
made it a snap

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Incrementally got getty going
● Got the Ion shell going
● Got to a prompt! :)
● Spent time refactoring
● Broke everything
● Spent time fixing and cleaning

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

Preparing a toolchain

Publishing the scope

Creating a bootflow

Creating a debug flow

Basic kernel bootstrap

Basic driver set

/bin/init bring-up

initfs bring-up

Context switching

Kernel paging support

Time keeping

Live disk support

Relibc port

Login shell

Stack frame unwinding

Apps!

● Got simpler tools like findutils etc working
● Added basic support for CPU identification 

and feature reporting
● Drank Beer. Lots of Beer.

FDT support

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo

Scoping the port

Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Current status of the Arm port
○ Clean room exercise underway (read as “I’ve broken it at present”)
○ Code continually checked into “aarch64” branches for each Redox 

component on gitlab
○ Documentation revamp underway
○ Silicon bring-up underway on Raspberry Pi3 and Hikey970

■ Slower than expected but hope to resolve this soon ish

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● General Redox roadmap items for 2019
○ Benchmarking infrastructure as a CI/CD gitlab target
○ Better SMP support
○ Priority based pre-emptive scheduler with pluggable policies
○ Move to lldb (external and self-hosted)
○ Bridge to Fuchsia and FreeBSD drivers
○ More native drivers
○ Dynamic loading + linking
○ IOMMU support
○ Device driver sandboxing with IOMMUs on Intel
○ OrbTk GUI toolkit refresh
○ Reincarnation server inspired by MINIX
○ RSoC 2019
○ Sweep contemporary designs for cool features to emulate

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Redox Arm roadmap items for 2019
○ Shadow the x86_64 port and achieve feature parity

■ Add SMP support
■ Add dynamic loading + linking support
■ Framebuffer support
■ Port the EFI OS loader to AArch64

○ Improve FDT support and convert more drivers
○ Complete WiP silicon bring-up (Raspberry Pi 3, Hikey970)
○ Switch from recursive to linear paging
○ GICv3, SMMU
○ Device driver sandboxing using SMMU

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● The Redox community
○ Development is done on GitLab
○ Real-time discussion is done on Mattermost Chat
○ Other discussion is done on the Redox Forum on Discourse
○ Redox follows the Rust Code of Conduct
○ Redox has a Contributing Guide
○ All of this information can be found at https://redox-os.org

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox

https://gitlab.redox-os.org/redox-os/redox
https://chat.redox-os.org
https://discourse.redox-os.org/
https://www.rust-lang.org/en-US/conduct.html
https://gitlab.redox-os.org/redox-os/redox/blob/master/CONTRIBUTING.md
https://redox-os.org


Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

● Demo Time + Question Time

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox



Robin Randhawa (arm) FOSDEM 2019 A microkernel written in Rust

What Name Aims History Stack Schemes Kernel Relibc Arm Roadmap Community Demo
Objectives Introduction Microkernels Rust RedoxObjectives Introduction Rust Redox


