Microkernel virtualization under one roof - dare the impossible -

Alexander Böttcher <alexander.boettcher@genode-labs.com>

Outline

- 1. Introduction
- 2. Kernel interfaces
- 3. VM interface harmonization
- 4. VMMs harmonized
- 5. Conclusion

Outline

1. Introduction

- 2. Kernel interfaces
- 3. VM interface harmonization
- 4. VMMs harmonized
- 5. Conclusion

Off-the-shell virtualization solution ridden with complexity.

Application of virtualization call for trustworthy solutions.

Complexity defeats trust.

Alternative approach \rightarrow Microkernels with hardware assisted virtualization extensions

Genode OS framework

VMM inventory of Genode

Hardware assisted virtualization/separation support

Microkernel	Host	VMM	Guest vCPU
hw	ARM, 32bit	custom	1, 32bit
hw/trustzone	ARM, 32bit	custom	1, 32bit
hw with Muen	Intel, 64bit	VBox 4	1, 32bit
		Seoul	N , 32bit
NOVA	Intel & AMD	VBox 4	N , 32bit, 64 bit
	32bit, 64bit	VBox 5	N , 32bit, 64 bit

Research challenge

Vision: VMMs runnable on all kernels w/o re-compilation

- Focus on x86 microkernels for now
- ${\scriptstyle \bullet \quad \rightarrow \ NOVA, \ seL4, \ Fiasco.OC, \ and \ -hw-}$

Outline

1. Introduction

2. Kernel interfaces

3. VM interface harmonization

- 4. VMMs harmonized
- 5. Conclusion

vCPU state on NOVA

Transfer: UTCB, VMCS/VMCB agnostic, partial state support

Transfer: vCPU state, not VMCS/VMCB agnostic, full state

Microkernel virtualization under one roof - dare the impossible -

Fiasco.OC microkernel

Transfer: **hybrid** - IPCBuffer & **syscall per** VMCS **register** IPCBuffer: VM exit - 17 registers, VM enter - 3 registers

Control flow on Fiasco.OC

nie

Control flow on seL4

Outline

1. Introduction

- 2. Kernel interfaces
- 3. VM interface harmonization
- 4. VMMs harmonized
- 5. Conclusion

$\mathsf{VMM} \to \mathsf{just} \ \mathbf{a} \ \mathbf{component}$

Genode components designed event driven

- Non-blocking thread (entrypoint) register for event sources
- Events cause transition in state machine
- State transition by Genode signal or RPC

 $\mathsf{VMM} \to \mathsf{just} \ \mathbf{a} \ \mathbf{component}$

Genode components designed event driven

- Non-blocking thread (entrypoint) register for event sources
- Events cause transition in state machine
- State transition by Genode signal or RPC

 $\label{eq:VM} \begin{array}{l} \mathsf{VM} \text{ event} \to \mathsf{just} \text{ another event source} \\ \mathsf{I/O} \text{ event} \to \mathsf{just} \text{ another event source} \end{array}$

Kernel agnostic ABI Unified vCPU state per platform

Genode -base- library with unified ABI in Id.lib.so

VM interface - kernel agnostic

VM connection/session \rightarrow VM address space established

- create_vcpu() setup new vCPUs
- cpu_state() access to guest state
- attach/detach() memory management of VM
- VM_handler class registration for VM event handling
- run/pause() control execution of vCPUs non-blocking

Client: NOVA, seL4: ${\sim}500$ - Fiasco.OC: ${\sim}1000$ - hw: ${\sim}30$ LOC

vCPU state Genode's -hw- microkernel (ARM)

Microkernel virtualization under one roof - dare the impossible -

THE .

Control flow on Genode's -hw- and NOVA

Blocking syscall unfortunate \rightarrow complicates life

Kernels provide mechanism to cancel

Avoid special case handling in Genode for first take \rightarrow Workaround: spawn per vCPU extra thread

Control flow on seL4 and Fiasco.OC

Outline

1. Introduction

- 2. Kernel interfaces
- 3. VM interface harmonization
- 4. VMMs harmonized

5. Conclusion

- Multiple vCPUs, multiple EPs, multiple physical CPUs

- Multiple vCPUs, multiple EPs, multiple physical CPUs sel4 v9.0:
 - Kernel fault on VMEnter by non vCPU thread \rightarrow patch

- Multiple vCPUs, multiple EPs, multiple physical CPUs sel4 v9.0:
 - Kernel fault on VMEnter by non vCPU thread \rightarrow patch
 - No unrestricted guest support \rightarrow patch

- Multiple vCPUs, multiple EPs, multiple physical CPUs sel4 v9.0:
 - Kernel fault on VMEnter by non vCPU thread \rightarrow patch
 - No unrestricted guest support \rightarrow patch
 - Scheduling bug if vCPU spins \rightarrow starvation \rightarrow patch

- Multiple vCPUs, multiple EPs, multiple physical CPUs sel4 v9.0:
 - Kernel fault on VMEnter by non vCPU thread \rightarrow patch
 - No unrestricted guest support \rightarrow patch
 - Scheduling bug if vCPU spins \rightarrow starvation \rightarrow patch
 - Kernel denies to boot on non VT-x platforms \rightarrow patch

- Multiple vCPUs, multiple EPs, multiple physical CPUs sel4 v9.0:
 - Kernel fault on VMEnter by non vCPU thread \rightarrow patch
 - No unrestricted guest support \rightarrow patch
 - Scheduling bug if vCPU spins \rightarrow starvation \rightarrow patch
 - Kernel denies to boot on non VT-x platforms \rightarrow patch
- \rightarrow Working toy VMM on all 3 kernels
- \rightarrow no AMD support by seL4

Replaced all NOVA specific parts

- Simple Genode based guests for testing

Running again after few days on Genode/NOVA

Seoul VMM

Replaced all NOVA specific parts

- Simple Genode based guests for testing

Running again after few days on Genode/NOVA

Various debugging sessions on Fiasco.OC and seL4 \rightarrow war stories (backup slides)

 \rightarrow 1 kernel patch for seL4 and 1 for Fiasco.OC

Seoul VMM

Replaced all NOVA specific parts

• Simple Genode based guests for testing

Running again after few days on Genode/NOVA

Various debugging sessions on Fiasco.OC and seL4 \rightarrow war stories (backup slides)

 \rightarrow 1 kernel patch for seL4 and 1 for Fiasco.OC

State: kernel agnostic Seoul VMM on all 3 kernels

- Guests: Genode VMs, Linux VM+network+SMP
- seL4: kernel fault on Linux SMP VM \rightarrow not investigated

VBox 5 VMM - current state

Work in progress - current state:

- Kernel agnostic VBox5 binary ready and runnable
- NOVA: simple Genode VMs running again
- seL4/Fiasco.OC: VM gets up, fails/hangs early

Known remaining challenges:

- Guest FPU state access required
 - Missing in VM interface
 - Support by seL4 and Fiasco.OC unclear
- seL4: no support for 64bit guests

Outline

1. Introduction

- 2. Kernel interfaces
- 3. VM interface harmonization
- 4. VMMs harmonized
- 5. Conclusion

Dare the impossible ightarrow possible*

Restrictions depending on the kernel

Roadmap:

- Finish VBox5 adaptation
- Extend -hw- kernel with VT-x extensions
- Optional: support other platforms, e.g. ARM

Benefits:

- Portable VMMs across kernels
- Genode users have the ultimate kernel choice

Thank you

Genode OS Framework https://genode.org

Source code at GitHub

https://github.com/genodelabs/genode

Stories around Genode https://www.genodians.org

Genode Labs GmbH https://www.genode-labs.com

Seoul VMM - war stories I

Fiasco.OC:

- In-guest faults during protected \rightarrow page mode transition
- reason: EFER status of host taken instead of guest
- Fiasco.OC: can be runtime configured \rightarrow good

seL4:

- seL4: EFER register not saved on VMexit \rightarrow kernel patch

Seoul VMM - war stories II

- CR* shadow/mask handling required on seL4 & Fiasco.OC
- Took some time, caused friction
- Open issue:
 - Kernels overwrites some bits in CR* to adhere to hardware requirements
 - Overriden bits not known/announced to VMM
 - Read back CR* modifications contains changes of hypervisor and VM mixed
 - Leads to various invalid guest states
 - Heuristics required unexpected but manageable:
 - Job of Fiasco.OC/seL4 vs VMM ?

Seoul VMM - war stories III

Another test VM:

- seL4 and NOVA: worked fine
- Fiasco.OC: invalid guest state

Long long sessions of VM state diffs between kernels

- Happens on switch from protected \rightarrow real mode Source reason:
 - vIRQ injection can not be reset by VMM on Fiasco.OC
 - Patching kernel helps