

Futatabi: Multi-camera instant replay
with slow motion

Steinar H. Gunderson

FOSDEM, February 2nd 2019

Hi! Welcome to the speaker notes for my
presentation about Futatabi, my instant replay and
slow motion system. As you might notice from
seeing the slides, they don’t always make a lot of
sense without the notes—they don’t necessarily
match exactly what I’m going to say, but they
should hopefully be of good use.

This talk is going to touch on two of my big passions,
namely programming and ultimate (also known as
ultimate frisbee). Ultimate isn’t a big sport in
Norway, so when I talk about it, I often have to
explain that it’s a team sport with a frisbee, where
the goal is to pass to a teammate in the end zone.

Unfortunately, when I moved back home to Norway
and started playing tournaments, the only available
stream looked like this. Running on Xsplit in
Windows, it was a very uneven 15 fps or so, and
worse, everything was smudged together. There’s
supposed to be a goal line there (it’s at the six-
meter line), but you can’t see it due to the poor
image quality—it’s just very hard to explain a game
to people when you can’t even see whether a pass
was caught in or out.

Naturally, the question became: Could we do better
with free software?

It turns out we can. This is Nageru, my live video
mixer. I presented it at FOSDEM 2016, and it’s
grown a lot since then. We’d never done sports
before, but it sounded like a fun challenge, so I
brought a few friends to see what we could do.

2666 mm

1349 mm

2520 mm

2268 mm

1188 mm

1902 mm

⚡
⚡

G
o
a
l G

o
a
l

Let’s have a look at what the physical setup looks
like. This is a standard indoor ultimate field,
40x20m (ultimate is mostly played outdoors in most
parts of the world, but Norway primarily has an
indoor tradition, using handball fields) plus a tiny bit
of space on all sides.

2666 mm

1349 mm

2520 mm

2268 mm

1188 mm

1902 mm

⚡
⚡

G
o
a
l G

o
a
l

1

We don’t have a large team. The producer operates
Nageru with one hand and operates camera 1,
mostly panning, with the other. They also mix audio
and control the overlay graphics.

The stream is pointed to camera 1 maybe 80–85% of
the time. It’s a general do-everything angle that
shows most of the active parts of the field as the
play progresses.

You can see the table for the commentators, who
have a comfort output of the stream.

2666 mm

1349 mm

2520 mm

2268 mm

1188 mm

1902 mm

⚡
⚡

G
o
a
l G

o
a
l

12

Camera 2 is run by a separate operator. While
camera 1 shows the entire play, camera 2 is usually
zoomed in and following the player with disc. It can
be a challenging task for the operator, but it allows
for detail shots that show what camera 1 can’t.

2666 mm

1349 mm

2520 mm

2268 mm

1188 mm

1902 mm

⚡
⚡

G
o
a
l G

o
a
l

12

3 4

\\

Finally, we have two goal cameras (3 and 4) for
“beauty shots”—we generally don’t use them a lot
during the actual point, but they can be used in-
between. They are GoPros, mounted high up
above each end zone on cheap, static tripod
extenders. Depending on the venue, we also
sometimes have an ambience cam for other fields,
a camera on the commentators, or a smartphone
as a mobile IP camera.

As a trick, we run these and their associated SDI
converters on power banks—they last more than
12 hours, so we don’t have to run power to them.

Most equipment is either stuff we had already,
borrowed or bought second-hand on eBay, so it’s
really a shoestring budget. And it’s nearly 100%
free software, all the way to the JavaScript on the
player page.

This is a video of what it looks like. Note the HTML5
graphics in the top left—the data is fed directly from
the scoreboard over serial port. (If there’s two
fields, we show both scores.) We also pull data live
from Google Sheets for lower thirds, realtime
updated tables, and so on. And you can see the
gray score line!

However, we soon noticed that it’s not enough.
People would make marginal catches or step really
near the line, and even after all this work, we still
don’t know whether they were in or out. We needed
some form of instant replay, and it needed to be in
slow motion.

So we went online to see what a slow motion
appliance would cost. This is the EVS XT3, which is
the standard choice in broadcast. Pretty much
every time you see a major sports event on TV,
there’s an XT3 in the chain. Or multiple ones.

Unfortunately, it’s £99,000. Used. (Plus £30 in
shipping to Norway. YMMV.) And to add insult to
injury, the seller’s on vacation. Even the remote
control is thousands of Euros!

There are cheaper devices available, but you’re
generally in the €10k+ range. It’s clear that we can’t
go down this route—we need a software-based
solution.

Enter Futatabi. It works as a multi-track recorder—
everything is recorded, all the time. It gets the
frames from Nageru over a standard network; I’ve
chosen MJPEG as the codec, as it’s reasonably
high-quality and has hardware encoders/decoders
in recent Intel GPUs. We have roughly 75 Mbit/sec/
camera in 720p, or 125 GB/hour for four cameras.

You can then make clips, put the into playlists and
play them back, again over TCP/IP. A nice bonus is
that if we don’t want to modify the frames, we can
echo them right back over the socket, byte for byte,
giving the best possible quality and speed.
(Futatabi works to maximize the usage of these
frames, but if you’re playing back at non-integral
rates, e.g. ramping, it’s not always possible.)

But when we slow down, how do we fill the gaps
between the frames? Let’s look at the alternatives.

We can try to just repeat each frame the required
amount of times, but the result isn’t so pretty—it’s
stuttering visibly. (If your PDF viewer supports
video, you can click to play it. But not on the notes
page—you’ll need to go to the slides PDF. Sorry.)

Note that I’ve purposefully chosen a challenging
sample here; there’s lots of motion, and I’m also
using 0.25x (“super-slow”) instead of the regular
0.5x. There are two reasons: First of all, it’s a lot
more interesting to look at something that goes
wrong—who cares about the easy case? Second, if
you’re not using to look at these various forms of
artifacts, it’s good if they are clear. Also, the
FOSDEM stream is downconverted to 25 fps, so it’s
for the stream viewers, too.

Fading between each frame isn’t much better. It’s just
as choppy, with some extra blur to boot.

To illustrate, I’ve overlaid two consecutive frames
from the previous video. It’s obvious that creating
good in-between frames somehow has to relate to
motion.

This brings us to the basic idea of optical flow. For
every pixel in the first frame, we can try to estimate
where it moved in the second one. It’s not a perfect
model—perhaps it went to nowhere (occlusion),
and with things like blur, maybe half of it went to
one place and half of it went to somewhere else.
But it’s a fairly good model, if we can make a good
estimate.

In this example, most of the vectors are slightly up
and to the right, since that’s how the camera
moved. But the disc is moving faster to the right,
and the player is moving to the left.

So once we have a flow field between the two
frames, we can halve and then somehow invert it.
(We won’t be discussing this step in detail—it’s a bit
trickier than it looks at first sight.) This would give
us, for the intermediate frame, where to fetch each
pixel from, which is more directly useful than where
it wants to go.

Note that this assumes near-linear motion, but for
high enough frame rates, it’s a fairly good
approximation.

There are more than 200 different papers about
optical flow! (There are also lots of other ways to
interpolate frames; in particular, deep learning
methods are rapidly becoming popular.) I read
through a bunch of the most promising one.
Unfortunately, realtime optical flow isn’t of all that
much interest in academia, but I found one that
showed a lot of promise. It talks about 300–600 fps
on a single CPU core, and it comes with reference
code.

Now, 300–600 fps isn’t really what you get in
practice; on reasonable settings, it’s more like 10
fps. I ended up making a GPU reimplementation
from scratch, also for license reasons (the
reference code was a bit unclear on licensing).

Let’s go through the algorithm on a high level. We
start with a motion search on low resolution; divide
up the image in a series of overlapping blocks, and
search for a similar block in the other image.

This motion search isn’t quite what you’d see in a
video codec—in particular, we’re interested in real
motion, not the best mathematical match. The DIS
paper uses gradient descent: We start with a zero
motion vector and then try to move in the direction
of the right change. Assuming the motion is small
compared to the resolution (which it is!), we have a
reasonable chance of finding the right vector.

Note that we’re not drawing the motion vectors as
arrows anymore, since it’s hard to read lots of tiny
arrows. Instead, we’re using the hue to denote the
angle, and the lightness to show the length. In this
case, the flow vector is a bit to the right.

After motion search over all the blocks, we have our
initial field. Here the overlapping blocks are all
weighted the same.

Note that I’ve brightened up the image of the flow
field a bit for benefit of the projector.

Now we apply a process called densification. Instead
of weighting all the motion vectors (or hypotheses)
equally, we look at how well they actually match for
each single pixel. It looks a bit noisy now, but it will
soon get better.

The final step is what the paper calls variational
refinement. It essentially amounts to setting up a
nonlinear differential equation and solving it
numerically, and ends up cleaning up the field a lot.

Unfortunately, we won’t have time to go through the
details, which is a shame, since it’s a very
fascinating and powerful technique. (If you’re
interested, I’ve made a full tutorial and put in the
source code.)

We could have stopped here if we wanted to, and just
scaled up the flow field. However, we can do better.

Now we double the resolution, and start over again.
However, this time, we start our motion search at
the previous flow field. This means that even
though the motion is now much larger compared to
our block size, we have a good initial hypothesis
and still have a good shot at finding the actual
motion (now with higher precision).

Densification again.

And variational refinement. Note that the disc is
starting to show.

One more step of motion search.

Densification.

And finally, variational refinement.

0.9 ms / 1.0 ms, EPE 14.69 px 1.1 ms / 1.4 ms, EPE 13.46 px

6.1 ms / 12.9 ms, EPE 11.98 px 164.7 ms / 353.6 ms, EPE 11.75 px

720p / 1080p frame time for full interpolation, RTX 2070

So, how good is our estimated flow? This is is a test
sequence from the so-called MPI-Sintel benchmark
(using Sintel from the Blender Foundation). Since
it’s synthetically rendered, we have exact motion
vectors for every pixel, and can compute the
endpoint error (EPE) over the entire 50 frames.

These are the four quality presets recommended by
the paper (1–4). We can see that even at 1080p,
we are realtime at quality 3 at 60 fps; note that this
is evaluating both forward and backward flow (in
parallel), computing the intermediate flow, and
doing the actual interpolation. We beat the
reference code by more than an order of magnitude
in performance, and a few percent in EPE.

Both visually and from the EPE numbers, we are
clearly far from perfection. But is it good enough for
reasonable interpolation?

This is a video of those two frames interpolated very,
very slowly. You can see there are some issues
around occlusion, but overall, it’s more than decent.
Remember, at 2x, these artifacts will blur past really
quickly.

(This slide purposefully left blank)

And here’s our test clip again, in 4x interpolation at
quality 3. There are some errors if you look closely,
but overall, this is something we can live with.

Demo!

It’s time to show the actual application, and what
better way to do so than a demo. Do note that it’s
really made for 1080p—I’ve moved a few controls
and such around to fit the projector’s 1024x768.

We’re going to be running with input from file, since I
don’t have four cameras and a Nageru machine
with me. There’s twelve hours of four-camera test
data readily available from the Futatabi home page,
so you can download it and play with it yourself
without setting up a large rig.

Thank you!

https://nageru.sesse.net/

That’s it. Futatabi is part of the Nageru distribution,
since they share a fair amount of code, so that’s
also where you want to go to download it.

While we’re doing Q&A, I’m going to keep playing a
highlight reel in the background. This is a set of
real, unedited replays made during the tournament
and rendered out at our realtime quality and speed,
with mistakes and all. So it’s very much a realistic
example of what your finished video would look
like. (I’m cutting it from the PDF in the interest of
keeping the size down a bit; you can view it on
YouTube).

Thanks for listening! Or reading the slide set, as
appropriate.

https://www.youtube.com/watch?v=N7gvyWaBDRs&t=4133s

