Futatabi: Multi-camera instant replay with slow motion

Steinar H. Gunderson

FOSDEM, February 2nd 2019
This seller is currently away until Jan 02, 2019. If you make a purchase, there may be a delay in processing your order.

EVS XT3 Broadcast Server, used

Condition: Used
“Very Good”

Price: GBP 99,000.00
Approximately NOK 1,085,543.53

Buy It Now
Add to cart

Best Offer:
Make Offer
Add to watch list

Shipping: GBP 30.00 (approx. NOK 331.98) Standard Shipping | See details
International items may be subject to customs processing and additional charges. ▶
Item location: Chesham, United Kingdom
Ships to: Worldwide ▶ See exclusions

Seller ships within 2 days after receiving cleared payment ▶

Payments: PayPal VISA Mastercard Discover

Returns: 14 days, buyer pays return shipping | See details

Guarantee: eBay Money Back Guarantee ▶ See details

Seller information
digibcltd (767 *)
100% Positive feedback

Save this Seller
Contact seller
Visit store
See other items
Registered as a Business Seller
EVS XT3 Broadcast Server, used

Condition: Used
"Very Good"

Price: GBP 99,000.00
Approximately
NOK 1,085,543.53

Buy It Now
Add to cart
Make Offer

Longtime Member

Shipping: GBP 30.00 (approx. NOK 331.98) Standard Shipping | See details
International items may be subject to customs processing and additional charges.
Item location: Chestington, United Kingdom
Ships to: Worldwide | See exclusions

Seller ships within 2 days after receiving cleared payment.

Payments:
PayPal
Visa
MasterCard
Discover

Returns: 14 days, buyer pays return shipping | See details
Guarantee: eBay MONEY BACK GUARANTEE | See details
Fast Optical Flow using Dense Inverse Search

Till Kroeger1 Radu Timofte1 Dengxin Dai1 Luc Van Gool1,2

1Computer Vision Laboratory, D-ITET, ETH Zurich
2VISICS / iMinds, ESAT, KU Leuven
\{kroegert, timofter, dai, vangool\}@vision.ee.ethz.ch

Abstract. Most recent works in optical flow extraction focus on the accuracy and neglect the time complexity. However, in real-life visual applications, such as tracking, activity detection and recognition, the time complexity is critical. We propose a solution with very low time complexity and competitive accuracy for the computation of dense optical flow. It consists of three parts: 1) inverse search for patch correspondences; 2) dense displacement field creation through patch aggregation along multiple scales; 3) variational refinement. At the core of our Dense Inverse Search-based method (DIS) is the efficient search of correspondences inspired by the inverse compositional image alignment proposed by Baker and Matthews [1, 2]. DIS is competitive on standard optical flow benchmarks. DIS runs at 300Hz up to 600Hz on a single CPU core1, reaching the temporal resolution of human’s biological vision system [3]. It is order(s) of magnitude faster than state-of-the-art methods in the same range of accuracy, making DIS ideal for real-time applications.
Demo!
Thank you!

(Video was removed from PDF due to size constraints, see it on YouTube)

https://nageru.sesse.net/