Futatabi: Multi-camera instant replay with slow motion

Steinar H. Gunderson

FOSDEM, February 2nd 2019

Nageru ⊻ideo <u>A</u>udio <u>H</u>elp

Preview

Cut (J)

Zoom out (K)

-4,2 dB

Auto

Lo-cut (24dB/oct) Limiter threshold Makeup gain

-10,0 dB

▼ Enabled

121 Hz

Publikum

Input 1 (720p59,94)

-0,0 dB

Set WB

-3,1 dB

Input 2 (720p60)

Set WB

Input 3 (720p59,94)

Set WB

Side-by-side

Double SBS

Static picture

Overlay

Fast Optical Flow using Dense Inverse Search

Till Kroeger¹ Radu Timofte¹ Dengxin Dai¹ Luc Van Gool^{1,2}

¹Computer Vision Laboratory, D-ITET, ETH Zurich ²VISICS / iMinds, ESAT, KU Leuven {kroegert, timofter, dai, vangool}@vision.ee.ethz.ch

Abstract. Most recent works in optical flow extraction focus on the accuracy and neglect the time complexity. However, in real-life visual applications, such as tracking, activity detection and recognition, the time complexity is critical. We propose a solution with very low time complexity and competitive accuracy for the computation of dense optical flow. It consists of three parts: 1) inverse search for patch correspondences; 2) dense displacement field creation through patch aggregation along multiple scales; 3) variational refinement. At the core of our *Dense Inverse Search*-based method (DIS) is the efficient search of correspondences inspired by the inverse compositional image alignment proposed by Baker and Matthews [1,2]. DIS is competitive on standard optical flow benchmarks. DIS runs at 300Hz up to 600Hz or a single CPU core¹, reaching the temporal resolution of human's biological vision system [3]. It is order(s) of magnitude taster than state-or-tne-art methods in the same range of accuracy, making DIS ideal for real-time applications.

720p / 1080p frame time for full interpolation, RTX 2070

Demo!

Thank you!

(Video was removed from PDF due to size constraints, see it on YouTube)

https://nageru.sesse.net/